Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Almost like a whale

22.09.2001


Twist in the tail: whales’ wolf-sized ancestors once walked the land
© Photodisc


Fossils bridge gap between land mammals and whales.

Fifty million years ago, two mammals roamed the desert landscapes of what is now Pakistan. They looked a bit like dogs. They were, in fact, land-living, four-legged whales.

Their new-found fossils join other famous missing links, such as the primitive bird Archaeopteryx, that show how one group of animals evolved into another. And they undermine the two prevailing theories about which land mammals are most closely related to cetaceans - whales, dolphins and porpoises1.



"This is an astounding discovery, with tremendous evolutionary implications," comments palaeontologist Zhexi Luo, of the Carnegie Museum of Natural History in Pittsburgh, Pennsylvania. "It’s important progress in mapping out the family tree of the major mammal groups, and will help to resolve some controversies. I’m all cheered up about it."

The new mammals are the fox-sized Ichthyolestes and the wolf-sized Pakicetus. They had meat eaters’ teeth, but were not genuine canines, having longer, more powerful tails, longer snouts and smaller eyes than dogs.

A closer look reveals Ichthyolestes and Pakicetus’ true allegiance. The two have "several strange bones in their ears that occur only in whales", says Hans Thewissen, of Northeastern Ohio Universities College of Medicine in Rootstown, Ohio, one of the fossils’ finders.

They also have a bone in their heel characteristic of even-toed ungulates, such as deer and sheep. An analysis of both skeletons places them, and other cetaceans, in a related, but separate, group from the even-toed ungulates.

"Everyone will agree that these animals are whales," says Thewissen, and yet the wettest they probably ever got was wading across a stream. Other primitive cetaceans recently discovered in Pakistan, dating from 47 million years ago, also have the ungulate anklebone, but their limbs are more adapted for life in the water2.

Toeing the line

Because cetaceans are so unlike any land mammal, with their legs as paddles and their nostrils atop their heads, it has been immensely difficult to place them in the evolutionary scheme of things.

Earlier fossil studies related them to the mesonychians, an extinct group of meat eaters. The new discoveries send this idea "out the window", says Thewissen.

Less likely to be abandoned on the strength of Thewissen’s evidence is an alternative hypothesis, based on DNA sequence analysis. This is the idea that cetaceans are more like hippopotamuses (another even-toed ungulate) than any other land mammal.

"Almost all the molecular data place cetaceans within the living even-toed ungulates, as a sister group to hippopotamuses," says evolutionary biologist Ulfur Arnason of the University of Lund in Sweden.

Rapid evolutionary change, be it molecular, ecological or anatomical, is extremely difficult to reconstruct, and the speed with which cetaceans took to the water may make their bones an unreliable guide to their ancestry, he says

Arnason believes the two camps will remain divided, at least for now. "There’s no point trying to reach some sort of consensus based on compromise. It has often been very difficult to reconcile morphological and molecular opinions," he says.

References

  1. Thewissen, J. G. M., Williams, E. M., Roe, L. J. & Hussain, S. T. Skeletons of terrestrial cetaceans and the relationship of whales to artiodactyls. Nature, 413, 277 - 281, (2001).
  2. Name, P. D., ul Haq, M., Zalmout, I. S., Khan, I. H. & Malkani, M. S. Origin of whales from early artiodactyls: hands and feet of Eocene Protocetidae from Pakistan. Science, 293, 2239 - 2242, (2001).

JOHN WHITFIELD | Nature News Service
Further information:
http://www.nature.com/nsu/010920/010920-11.html

More articles from Life Sciences:

nachricht Molecular microscopy illuminates molecular motor motion
26.07.2017 | Penn State

nachricht New virus discovered in migratory bird in Rio Grande do Sul, Brazil
26.07.2017 | Fundação de Amparo à Pesquisa do Estado de São Paulo

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

CCNY physicists master unexplored electron property

26.07.2017 | Physics and Astronomy

Molecular microscopy illuminates molecular motor motion

26.07.2017 | Life Sciences

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>