Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New understanding of cell movement may yield ways to brake cancer’s spread

01.08.2005


From birth until death, our cells migrate: nerve cells make their vital connections, embryonic cells move to the proper places to form organs, immune cells zero in to destroy pathogenic organisms, and cancer cells metastasize, spreading deadly disease through the body. Scientists studying these migrations didn’t know how cells determined where to go. Until now.



A Burnham Institute study has identified a fragment of a protein that senses chemicals that induce a cell to move into the right direction. Guided by this fragment, the molecular machinery needed for cell movement begins accumulating at the leading edge, or front of a cell in response to a variety of chemical messengers, and begins the directed process of migration. The study, led by associate professor and Burnham Cancer Center Acting Director Kristiina Vuori, M.D., Ph.D., appears in the August issue of Nature Cell Biology.

The finding is the first to determine the molecule responsible for internally choreographing directed cell migration. The experiments were conducted in several widely used laboratory models, but the molecule exists in nearly all animals, from roundworms to mammals, and likely has a conserved function throughout species. Knowing exactly what triggers cellular migration can help develop treatments that halt cancer metastasis and immune disorders like arthritis and asthma.


"Previous studies by us and others have identified how a migrating cell ’gets its wheels’ and, mechanistically, is able to move. In this study, we have now determined how these wheels become pointed in the right direction", said Vuori. "We now know this is done using a protein that holds true in most cellular systems. Seeing how this process directs cells can help us better address a host of diseases that result from too little or too much cell movement, or from cells moving in the wrong direction and to the wrong place."

Dr. Vuori and her team found a molecule called DOCK180, a key signaling protein that binds to PIP3. PIP3 is a lipid that accumulates on the leading edge of a cell about to move, usually in response to a number of outside cellular attractants like chemokines, growth factors and other molecules. Meanwhile at the hind end of the cell, enzymes degrade the PIP3 lipid, creating a gradient from one end of the cell to the other.

It is this PIP3 lipid gradient that sets the cell into motion toward the right direction. The PIP3-binding portion of DOCK180 senses the gradient, and DOCK180 starts accumulating at the leading edge of the cell. Along with it, DOCK180 brings a host of additional molecules to the leading edge, triggering a series of internal events that begin moving the cell forward. "We see a protrusion form first, in which the cell changes shape and extends towards the direction it is about to go, followed by movement of the rest of the cell," Vuori said.

Now, the researchers are looking at developing a three-dimensional picture of PIP3 -binding domain’s molecular structure. "We are currently planning these structure studies with our collaborators here at the Burnham," Vuori said. "If we know its molecular structure, we hope to be able to make small chemicals that inhibit inappropriate cell migration, including the types seen in metastatic cancer cells."

Nancy Beddingfield | EurekAlert!
Further information:
http://www.burnham.org

More articles from Life Sciences:

nachricht Nesting aids make agricultural fields attractive for bees
20.07.2017 | Julius-Maximilians-Universität Würzburg

nachricht The Kitchen Sponge – Breeding Ground for Germs
20.07.2017 | Hochschule Furtwangen

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

Leipzig HTP-Forum discusses "hydrothermal processes" as a key technology for a biobased economy

12.07.2017 | Event News

 
Latest News

Researchers create new technique for manipulating polarization of terahertz radiation

20.07.2017 | Information Technology

High-tech sensing illuminates concrete stress testing

20.07.2017 | Materials Sciences

First direct observation and measurement of ultra-fast moving vortices in superconductors

20.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>