Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New understanding of cell movement may yield ways to brake cancer’s spread

01.08.2005


From birth until death, our cells migrate: nerve cells make their vital connections, embryonic cells move to the proper places to form organs, immune cells zero in to destroy pathogenic organisms, and cancer cells metastasize, spreading deadly disease through the body. Scientists studying these migrations didn’t know how cells determined where to go. Until now.



A Burnham Institute study has identified a fragment of a protein that senses chemicals that induce a cell to move into the right direction. Guided by this fragment, the molecular machinery needed for cell movement begins accumulating at the leading edge, or front of a cell in response to a variety of chemical messengers, and begins the directed process of migration. The study, led by associate professor and Burnham Cancer Center Acting Director Kristiina Vuori, M.D., Ph.D., appears in the August issue of Nature Cell Biology.

The finding is the first to determine the molecule responsible for internally choreographing directed cell migration. The experiments were conducted in several widely used laboratory models, but the molecule exists in nearly all animals, from roundworms to mammals, and likely has a conserved function throughout species. Knowing exactly what triggers cellular migration can help develop treatments that halt cancer metastasis and immune disorders like arthritis and asthma.


"Previous studies by us and others have identified how a migrating cell ’gets its wheels’ and, mechanistically, is able to move. In this study, we have now determined how these wheels become pointed in the right direction", said Vuori. "We now know this is done using a protein that holds true in most cellular systems. Seeing how this process directs cells can help us better address a host of diseases that result from too little or too much cell movement, or from cells moving in the wrong direction and to the wrong place."

Dr. Vuori and her team found a molecule called DOCK180, a key signaling protein that binds to PIP3. PIP3 is a lipid that accumulates on the leading edge of a cell about to move, usually in response to a number of outside cellular attractants like chemokines, growth factors and other molecules. Meanwhile at the hind end of the cell, enzymes degrade the PIP3 lipid, creating a gradient from one end of the cell to the other.

It is this PIP3 lipid gradient that sets the cell into motion toward the right direction. The PIP3-binding portion of DOCK180 senses the gradient, and DOCK180 starts accumulating at the leading edge of the cell. Along with it, DOCK180 brings a host of additional molecules to the leading edge, triggering a series of internal events that begin moving the cell forward. "We see a protrusion form first, in which the cell changes shape and extends towards the direction it is about to go, followed by movement of the rest of the cell," Vuori said.

Now, the researchers are looking at developing a three-dimensional picture of PIP3 -binding domain’s molecular structure. "We are currently planning these structure studies with our collaborators here at the Burnham," Vuori said. "If we know its molecular structure, we hope to be able to make small chemicals that inhibit inappropriate cell migration, including the types seen in metastatic cancer cells."

Nancy Beddingfield | EurekAlert!
Further information:
http://www.burnham.org

More articles from Life Sciences:

nachricht Meadows beat out shrubs when it comes to storing carbon
23.11.2017 | Norwegian University of Science and Technology

nachricht Migrating Cells: Folds in the cell membrane supply material for necessary blebs
23.11.2017 | Westfälische Wilhelms-Universität Münster

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Underwater acoustic localization of marine mammals and vehicles

23.11.2017 | Information Technology

Enhancing the quantum sensing capabilities of diamond

23.11.2017 | Physics and Astronomy

Meadows beat out shrubs when it comes to storing carbon

23.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>