Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Immune system’s distress signal tells bacteria when to strike back

29.07.2005


The human opportunistic pathogen, Pseudomonas aeruginosa, has broken the immune system’s code, report researchers from the University of Chicago, enabling the bacteria to recognize when its host is most vulnerable and to launch an attack before the weakened host can muster its defenses.



In the 29 July 2005 issue of Science, the researchers show how this lethal organism detects interferon-gamma, a chemical messenger the immune system uses to coordinate its efforts to get rid of bacteria. When these bacteria intercept this message, they recognize it as a threat, assess their own numbers and, if they have sufficient strength, activate genes that quickly transform them from benign passengers in the bowel into deadly blood-stream invaders.

"Most of the time these microbes are content to live and grow in our intestines," said John Alverdy, M.D., professor of surgery at the University of Chicago and director of the study. "They don’t feel the need or even look for the opportunity to attack. But when they detect a threat, they have a remarkably sophisticated defense plan, based, unfortunately, on the notion that the best defense is an overwhelming offense."


Pseudomonas aeruginosa is ubiquitous. It lives in all sorts of moist places, including damp soil and on the surface of vegetables, as well as in streams, faucets and drinking fountains. It is often a long-term bowel tenant, colonizing the intestines of about three percent of healthy people.

In the bowel this germ is usually harmless, but it can turn deadly, causing gut-derived sepsis. It is also a frequent cause of infections after major surgery.

Physicians have theorized, said Alverdy, that germs such as Pseudomonas are always "probing for a weakness in the host and are ready and willing to strike whenever they find one." He and his colleagues, however, are testing an alternative theory: that "bacteria are perfectly content in their niche until signals from the host – usually during stress, such as after major surgery – let them know there’s a problem."

For Pseudomonas, detecting interferon-gamma, "is like receiving a demolition notice from your landlord," Alverdy said. "It lets them know they need to find a new home. They don’t take that news any better than we would."

A vulnerable host, like a condemned home, is a liability, a threat to its tenants’ survival. Pseudomonas, however, has the tools to engineer its own escape – by killing off the host.

This wily pathogen can evade a host’s immune system. It can repel antibiotics, secrete toxins similar to those used by anthrax, latch onto the bowel wall, bore its way through, and flow into the blood stream. As a consequence, patients with widespread Pseudomonas infection often die within a few days.

Alverdy and colleagues were able to pinpoint key early steps of this lethal process. The transformation starts when a weakened host tries to boost its defenses against any possible invasion. The host’s T cells release chemical signals that activate the immune system. One of those signals, interferon-gamma, is intercepted by a protein, called OprF, found on the outer membrane surface of Pseudomonas. This serves an early warning system.

Once Pseudomonas detects the first signs of a brewing immune response, they also begin to prepare for battle, gathering information and responding with their own counteroffensive.

Their first move is a process called quorum sensing, which bacteria use to gauge their own numbers. When interferon-gamma binds with OprF on the bacterial cell surface, it activates a gene called rhII. RhII triggers synthesis and secretion of a bacterial signaling molecule called C4-HSL. By measuring the amount of C4-SHL in their environment these bacteria can estimate their own numbers and density.

If they feel they are sufficiently numerous, they produce two virulence factors, molecular weapons known as PA-I and Pyocyanin. PA-I causes the barrier cells that line the host’s bowel to become more permeable, which renders them more susceptible to the microbe’s toxins. Pyocyanin enhances the germ’s ability to pass through the weakened bowel wall, enter the bloodstream and invade tissue.

"Our goal," Alverdy said, "is to understand the many steps in this process and use that knowledge to find novel ways to intervene, to stop the infection before it starts rather than trying to kill all the germs."

Many harmful bacteria have already learned how to resist the drugs developed to treat them. Scientists are now looking at alternatives, such as ways to block or scramble the chemical messages that allow microbes to eavesdrop on their hosts or to conspire together to mount an attack.

"We chose to study this in Pseudomonas because it is one of the deadliest infections for patients who undergo major surgery," said Alverdy. "We suspect something very similar, however, occurs in all sorts of infections."

Inflammatory bowel disease patients, for example, have elevated cytokines – the chemical messengers that trigger an immune response – in the bowel. "These could signal the bug," said Alverdy, "then the bug strikes back and then the inflammation process snowballs." Because the bacteria in this case are "normal flora," people with no real infection develop a chronic disease.

The battles between pathogens and their hosts have been going on for millions of years, Alverdy said, with each side constantly devising novel measures, countermeasures, and counter-countermeasures, including sophisticated mutual espionage.

The discovery of antibiotics gave human hosts a temporary advantage, "but that seems to be waning a bit," he added. "We need to learn new ways to understand our germs and think about how to placate rather than annihilate them."

John Easton | EurekAlert!
Further information:
http://www.uchospitals.edu

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>