Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Anti-inflammatory function of Alzheimer’s disease drugs revealed

29.07.2005


Points way to development of more efficient treatment



The mechanism in anti-Alzheimer’s disease drugs that inhibits the production of a destructive, inflammation-causing protein in the brain has been revealed by researchers at the Hebrew university of Jerusalem.

Their work, described in a recent issue of the American journal, Annals of Neurology, is likely to lead to the development of more efficient drugs than are currently in use for treating Alzheimer’s Disease as well as other neurological conditions resulting from infections, autoimmune diseases such as multiple sclerosis, or brain inflammation resulting from trauma or stroke.


The research team working on this project was headed by Prof. Raz Yirmiya of the Psychology Department at the Hebrew University, Dr. Yehuda Pollak, a post-doctoral fellow in Prof. Yirmiya’s laboratory; and in cooperation with Hermona Soreq, the Charlotte Slesinger Professor of Cancer Studies at the Silberman Institute of Life Sciences at the Hebrew University, and Prof. Tamir Ben-Hur of the Hebrew University Faculty of Medicine.

Alzheimer’s Disease is a degenerative disease of the brain, characterized by a deterioration of both cognitive and physical abilities. It first affects memory and the ability to carry out complex, coordinated tasks. It also can bring on depression, inattention and outbursts of anger. In a more progressive stage, the disease can cause difficulties in the ability to perform even simple tasks such as speaking and comprehending, eating and sleeping. The affected person can even forget his name and identity.

The medicines administered today to Alzheimer’s Disease patients focus on preventing the breakdown of acetylcholine, a chemical produced by brain cells which transmits information within the brain and is vitally involved in cognitive processes that include memory, attention and thought. Because acetylcholine-producing cells are among the first to die in Alzheimer’s Disease patients, drug-induced elevation of acetylcholine levels partially attenuates the cognitive deterioration.

In recent years it has been shown that another pathological process that occurs in the brain of Alzheimer’s Disease patients is excessive immune activation and inflammation, which are induced by overproduction of an inflammation-producing protein called interleukin-1, as well as a few other related compounds. This process can impair the functioning of nerve cells and can even lead to their death. Furthermore, genetic alterations in the interleukin-1 gene have been associated with increased risk for the appearance and severity of Alzheimer’s Disease symptoms.

The Hebrew University researchers found that anti-Alzheimer’s Disease drugs currently in use not only block the activity of the enzyme responsible for breaking down acetylcholine but also cause a marked reduction in the production of interleukin-1. Furthermore, they describe the use of a novel drug (EN101), developed by Prof. Soreq’s team, which produces these effects in a more efficient way than known heretofore by destroying the molecular antecedent (messenger RNA) of the enzyme, rather than simply blocking the enzyme’s activity.

In a series of experiments, conventional anti-Alzheimer’s Disease drugs, as well as the novel drug EN101, were injected into mice with brain inflammation. It was found that these injections reduced significantly the activity of the enzyme that breaks down acetylcholine and blocked almost entirely the production of interleukin-1.

"These findings suggest a new role for acetylcholine in the brain," said Prof. Yirmiya. "When the anti-Alzheimer’s Disease drugs block the enzyme which breaks down acetylcholine, the level of this chemical in the brain goes up, and there is a reduction of the production of the inflammatory material, interleukin-1, and its destructive influence in the brain."

"The discovery of this mechanism in the anti-Alzheimer’s Disease medicines points the way towards development of new forms of these medicines which will block even more efficiently and specifically the inflammatory and destructive activity of inteleukin-1," Prof. Yirmiya stressed. "Beyond that, it is likely that the drugs that are currently used for treatment of Alzheimer’s Disease, and particularly the new drug EN101, will also be effective in dealing with other inflammatory illnesses."

Jerry Barach | EurekAlert!
Further information:
http://www.huji.ac.il

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>