Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Anti-inflammatory function of Alzheimer’s disease drugs revealed

29.07.2005


Points way to development of more efficient treatment



The mechanism in anti-Alzheimer’s disease drugs that inhibits the production of a destructive, inflammation-causing protein in the brain has been revealed by researchers at the Hebrew university of Jerusalem.

Their work, described in a recent issue of the American journal, Annals of Neurology, is likely to lead to the development of more efficient drugs than are currently in use for treating Alzheimer’s Disease as well as other neurological conditions resulting from infections, autoimmune diseases such as multiple sclerosis, or brain inflammation resulting from trauma or stroke.


The research team working on this project was headed by Prof. Raz Yirmiya of the Psychology Department at the Hebrew University, Dr. Yehuda Pollak, a post-doctoral fellow in Prof. Yirmiya’s laboratory; and in cooperation with Hermona Soreq, the Charlotte Slesinger Professor of Cancer Studies at the Silberman Institute of Life Sciences at the Hebrew University, and Prof. Tamir Ben-Hur of the Hebrew University Faculty of Medicine.

Alzheimer’s Disease is a degenerative disease of the brain, characterized by a deterioration of both cognitive and physical abilities. It first affects memory and the ability to carry out complex, coordinated tasks. It also can bring on depression, inattention and outbursts of anger. In a more progressive stage, the disease can cause difficulties in the ability to perform even simple tasks such as speaking and comprehending, eating and sleeping. The affected person can even forget his name and identity.

The medicines administered today to Alzheimer’s Disease patients focus on preventing the breakdown of acetylcholine, a chemical produced by brain cells which transmits information within the brain and is vitally involved in cognitive processes that include memory, attention and thought. Because acetylcholine-producing cells are among the first to die in Alzheimer’s Disease patients, drug-induced elevation of acetylcholine levels partially attenuates the cognitive deterioration.

In recent years it has been shown that another pathological process that occurs in the brain of Alzheimer’s Disease patients is excessive immune activation and inflammation, which are induced by overproduction of an inflammation-producing protein called interleukin-1, as well as a few other related compounds. This process can impair the functioning of nerve cells and can even lead to their death. Furthermore, genetic alterations in the interleukin-1 gene have been associated with increased risk for the appearance and severity of Alzheimer’s Disease symptoms.

The Hebrew University researchers found that anti-Alzheimer’s Disease drugs currently in use not only block the activity of the enzyme responsible for breaking down acetylcholine but also cause a marked reduction in the production of interleukin-1. Furthermore, they describe the use of a novel drug (EN101), developed by Prof. Soreq’s team, which produces these effects in a more efficient way than known heretofore by destroying the molecular antecedent (messenger RNA) of the enzyme, rather than simply blocking the enzyme’s activity.

In a series of experiments, conventional anti-Alzheimer’s Disease drugs, as well as the novel drug EN101, were injected into mice with brain inflammation. It was found that these injections reduced significantly the activity of the enzyme that breaks down acetylcholine and blocked almost entirely the production of interleukin-1.

"These findings suggest a new role for acetylcholine in the brain," said Prof. Yirmiya. "When the anti-Alzheimer’s Disease drugs block the enzyme which breaks down acetylcholine, the level of this chemical in the brain goes up, and there is a reduction of the production of the inflammatory material, interleukin-1, and its destructive influence in the brain."

"The discovery of this mechanism in the anti-Alzheimer’s Disease medicines points the way towards development of new forms of these medicines which will block even more efficiently and specifically the inflammatory and destructive activity of inteleukin-1," Prof. Yirmiya stressed. "Beyond that, it is likely that the drugs that are currently used for treatment of Alzheimer’s Disease, and particularly the new drug EN101, will also be effective in dealing with other inflammatory illnesses."

Jerry Barach | EurekAlert!
Further information:
http://www.huji.ac.il

More articles from Life Sciences:

nachricht Two Group A Streptococcus genes linked to 'flesh-eating' bacterial infections
25.09.2017 | University of Maryland

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>