Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

African grey parrot is first bird to comprehend numerical concept akin to zero

11.07.2005



Ground-breaking research is reshaping understanding of the avian brain and holds promise in teaching learning-disabled children

A Brandeis University researcher has shown that an African grey parrot with a walnut-sized brain understands a numerical concept akin to zero – an abstract notion that humans don’t typically understand until age three or four, and that can significantly challenge learning-disabled children.

Strikingly, Alex, the 28-year-old parrot who lives in a Brandeis lab run by comparative psychologist and cognitive scientist Dr. Irene Pepperberg, spontaneously and correctly used the label "none" during a testing session of his counting skills to describe an absence of a numerical quantity on a tray. This discovery prompted a series of trials in which Alex consistently demonstrated the ability to identify zero quantity by saying the label "none."



Dr. Pepperberg’s research findings, published in the current issue of The Journal of Comparative Psychology, add to a growing body of scientific evidence that the avian brain, though physically and organizationally somewhat different from the mammalian cortex, is capable of higher cognitive processing than previously thought. Chimpanzees and possibly squirrel monkeys show some understanding of the concept of zero, but Alex is the first bird to demonstrate an understanding of the absence of a numerical set, Dr. Pepperberg noted.

"It is doubtful that Alex’s achievement, or those of some other animals such as chimps, can be completely trained; rather, it seems likely that these skills are based on simpler cognitive abilities they need for survival, such as recognition of more versus less," explained Dr. Pepperberg.

Alex had previously used the label "none" to describe an absence of similarity or difference between two objects, but he had never been taught the concept of zero quantity. "Alex has a zero-like concept; it’s not identical to ours but he repeatedly showed us that he understands an absence of quantity," said Dr. Pepperberg.

Historically, the use of "zero" to label a null set has not always been obvious even in human cultures, which in many cases lacked a formal term for zero as recently as the late Middle Ages. The value of number research lies mainly in its ability to help determine the extent of animal cognition and animals’ potential for more complex capacities. To that end, Dr. Pepperberg’s studies on the avian brain are continuing with research into Alex’s ability to count, as well as add and subtract small quantities.

Yet significantly, Dr. Pepperberg’s research, which uses a training method called the model-rival technique, also holds promise for teaching autistic and other learning-disabled children who have difficulty learning language, numerical concepts and even empathy.

The model rival technique involves two trainers, one to give instructions, and one to model correct and incorrect responses and to act as the student’s rival for the trainer’s attention; the model and trainer also exchange roles so that the student sees that the process is fully interactive. The student, in this case, a middle-aged parrot, tries to reproduce the correct behavior. So far, results using this learning technique with small groups of autistic children, taught by Diane Sherman, PhD, in Monterey, CA, have been very promising, said Dr. Pepperberg.

"This kind of research is changing the way we think about birds and intelligence, but it also helps us break down barriers to learning in humans – and the importance of such strides cannot be underestimated," said Dr. Pepperberg.

Gardner | EurekAlert!
Further information:
http://www.brandeis.edu

More articles from Life Sciences:

nachricht Molecular Force Sensors
20.09.2017 | Max-Planck-Institut für Biochemie

nachricht Foster tadpoles trigger parental instinct in poison frogs
20.09.2017 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Molecular Force Sensors

20.09.2017 | Life Sciences

Producing electricity during flight

20.09.2017 | Power and Electrical Engineering

Tiny lasers from a gallery of whispers

20.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>