Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chemists discover new way to fix nitrogen

06.07.2005


Lab synthesizes ammonia using nitrogen and hydrogen in solution



University of Oregon chemists have produced ammonia from nitrogen at room temperature under normal atmospheric pressure, marking a significant step toward achieving one of chemistry’s coveted goals.

A scientific article describing the method, which uses a simple compound of iron and hydrogen as the electron source in the "fixing" reaction, is available online and will be published in the July 27 issue of the Journal of the American Chemical Society.


The process devised by University of Oregon chemistry professor David Tyler and two graduate students, John Gilbertson and Nate Szymczak, was carried out in ether solutions. However, all steps but one also have been shown to work in water.

In the atmosphere, nitrogen gas is inert. However when nitrogen is converted to ammonia, it becomes available as a nitrogen source for plant growth – and as such is the fertilizer that drives the world’s food supply. Industry produces ammonia using the century-old Haber-Bosch process, which directly combines nitrogen from the air with hydrogen under extremely high pressures and temperatures.

"For the first time, we’ve been able to use hydrogen as the source of electrons in the laboratory fixation of nitrogen," Tyler said. "Until now people have had to use other sources of electrons that are not relevant to the Haber-Bosch process. The only other case in which hydrogen was used successfully required higher temperature and exotic materials."

"In the eyes of chemists, the conversion of nitrogen to ammonia in water, using simple hydrogen at room temperature and pressure is the holy grail of nitrogen fixation," Tyler said. "The next challenge is figuring out how to carry out the complete cycle in water."

The University of Oregon method parallels the Haber-Bosch process very closely by using the electrons in the hydrogen molecule as the source of electrons required in the fixing reaction. "This is simpler than any other solution put forward to date," Tyler said. "Other procedures involve the use of relatively exotic electron sources or they require elevated temperatures to complete the synthesis."

And, while the new method "provides one solution to a fascinating, fundamental scientific challenge," Tyler emphasized that it could be decades – if ever – before it will bridge from the bench to cost-effective industry use.

Tyler said the new approach to synthesizing ammonia took five years to achieve and was inspired by earlier advances made by his graduate students, who found ways to make complexes soluble in water. He pointed out that Gilbertson and Szymczak both are funded by the university’s National Science Foundation grant establishing research positions in Materials Science through the IGERT (Integrative Graduate Education and Research Traineeship) program.

"Solving problems of this magnitude takes a lot of student power and research dollars," Tyler said. "We’re building on advances achieved during the last 20 years. A lot of hard thought went into this, not only by me and my students, but by other researchers who came before us."

Students chosen for the IGERT program receive opportunities to pursue interdisciplinary research, teach at other campuses, and do internships at National Labs and private companies. Gilbertson, who will complete his doctorate in chemistry in August, will begin a teaching postdoctoral position at Trinity University in San Antonio, Texas this fall. Szymczak currently has an internship at Pacific Northwest National Laboratories.

Melody Ward Leslie | EurekAlert!
Further information:
http://uoregon.edu

More articles from Life Sciences:

nachricht MicroRNA helps cancer evade immune system
19.09.2017 | Salk Institute

nachricht Ruby: Jacobs University scientists are collaborating in the development of a new type of chocolate
18.09.2017 | Jacobs University Bremen gGmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

Im Focus: Artificial Enzymes for Hydrogen Conversion

Scientists from the MPI for Chemical Energy Conversion report in the first issue of the new journal JOULE.

Cell Press has just released the first issue of Joule, a new journal dedicated to sustainable energy research. In this issue James Birrell, Olaf Rüdiger,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

New quantum phenomena in graphene superlattices

19.09.2017 | Physics and Astronomy

A simple additive to improve film quality

19.09.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>