Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Technique provides new look on response of diseased canine heart

06.07.2005


Using newly available biological technology, researchers have developed the first molecular portrait of multiple gene activity in diseased heart tissue taken from dogs near death from a devastating disease. The discovery sheds new light on the heart’s response to dilated cardiomyopathy (DCM), a disease of large-breed dogs.



New microscopic technology allows researchers to place tens of thousands of genes on 1.5-inch-square slides known as a microarray. In this case, researchers used the GeneChip Canine Genome Array, a newly available commercial microarray specifically designed for dogs and containing more than 23,000 genes. With it, they performed global genome-expression profiling to focus on the transcription (the level of genetic coding into messenger RNA) of the genes taken from five healthy dogs and two Dobermans with DCM.

In the affected dogs, 478 transcripts were significantly different from those in the tissue of the control animals. Of these transcripts, 173 were increased (up regulated) while 305 were lowered (down regulated). From this pool, the researchers identified 167 genes that may play a role in the development and progression of DCM.


The findings of the work, which was done at the University of Illinois College of Veterinary Medicine and the State University of New York at Albany, are reported in the July issue of the American Journal of Veterinary Research.

"Finding altered activity of a gene doesn’t necessarily mean that it is a cause of the disease," said Mark A. Oyama, a veterinary cardiologist in the department of veterinary clinical medicine at the University of Illinois at Urbana-Champaign. "What a gene microarray tells us is more about the overall patterns of disease and how the heart responds to it. Genes that are up or down regulated may be the root cause, but we don’t know that. What this experiment really does is narrow down the population of 23,000-plus genes to those that we should study in more detail."

Oyama and co-author Sridar Chittur of the Center for Functional Genomics at the State University of New York at Albany separated the 167 identified genes into eight categories to help them interpret the heart’s response to DCM.

They noted that pathways involved in cellular energy production, cell structure and signaling/communication generally were down regulated, while those tied to cellular defense and stress responses were up regulated. Among the 167 genes they identified were several that may play a significant role in DCM.

The miniaturization of technology, Oyama said, has made it possible to look at thousands of genes at once, rather than the tedious, time-consuming gene-by-gene analysis required until recently. The new microarray technology, much of it developed for human medicine, he added, is allowing veterinary researchers to begin looking more closely at animal diseases, especially in increasingly popular breeds.

"It has been estimated that more than 40 percent of all Doberman pinschers are going to get DCM as they age," Oyama said. "It is progressive and invariably fatal."

DCM typically occurs as dogs reach middle age, causing the heart to enlarge and lose its strength. Dobermans, Great Danes and boxers are predisposed to the disease, but it also commonly strikes the Scottish deerhound, Newfoundland, Irish wolfhound and golden and Labrador retrievers.

"We don’t know the root cause. In people, several different genetic abnormalities have been identified. We suspect a similar cause in dogs," Oyama said. "But we don’t really know what’s going on in the heart muscle. We also don’t have a very good idea about the changes occurring in heart muscle cells once the disease starts. The body responds by activating a whole cascade of events that cause the progression of the disease. By better understanding which genes are turned on and which genes are turned off, we can begin to think about manipulating the sequence of events to stop or reverse the disease."

The researchers are now sampling a larger population of dogs so that a more sophisticated analysis can be done. "We want to understand the morphology of DCM and the pathways of genes that are crucial in the development and progression of the disease," Oyama said. "We are looking at everything that’s going on all at the same time in all of the genes. Our approach kind of uses a wide-angle lens rather than a microscope. If we can better understand what the heart is doing, we may be able to arrest the disease."

Jim Barlow | EurekAlert!
Further information:
http://www.uiuc.edu

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Researchers invent tiny, light-powered wires to modulate brain's electrical signals

21.02.2018 | Life Sciences

The “Holy Grail” of peptide chemistry: Making peptide active agents available orally

21.02.2018 | Life Sciences

Atomic structure of ultrasound material not what anyone expected

21.02.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>