Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Neurotransmitters signal aggressive cancer, offer potential for early diagnosis

05.07.2005


Nerves talk to each other using chemicals called neurotransmitters. One of those "communication chemicals," aptly named GABA (gamma amino butyric acid), shows up in unusually high amounts in some aggressive tumors, according to a new study from Washington University School of Medicine in St. Louis.



The researchers investigated metastatic neuroendocrine tumors, which include aggressive types of lung, thyroid, and prostate cancers that spread to other parts of the body. Their study will appear in the July 12 issue of the Proceedings of the National Academy of Sciences and is available online after July 4.

"GABA appears to be an indicator of a bad prognosis for these cancers," says Jeffrey I. Gordon, M.D., director of the Center for Genome Sciences at Washington University. "But there’s hope in our ability to identify substances, like GABA, that are associated with metastatic tumors. Usually these tumors are diagnosed only after they have spread to other parts of the body, but now we have the potential to recognize them before they metastasize."


Elevated amounts of GABA were discovered in an analysis of aggressive neuroendocrine prostate tumors in genetically engineered mice. Along with GABA, two other substances were seen, one a related neurotransmitter and the other a plant growth hormone with an unknown function in animals. Furthermore, the researchers found that the tumors made GABA using a different set of biochemical reactions than normal. Key enzymes involved in the production of these compounds were switched on in poor prognosis malignant metastatic tumors.

"The mouse model was an important beginning point for our investigation," says the study’s lead author Joseph E. Ippolito, a graduate research assistant in the University’s NIH-supported Medical Scientist Training Program. "We took information about what genes were expressed in the mouse tumors, made computer-assisted predictions about what type of metabolism was going on in these abnormal cells compared to their normal non-cancerous counterparts, and used new, powerful metabolite detectors to verify that these compounds were actually being made. We then took information gained from the mouse and asked whether the same human genes are expressed in poor prognosis as opposed to good prognosis human tumors. We found that the human genes that give rise to the key enzymes required to produce these metabolites were invariably switched on the poor prognosis but not the good prognosis tumor groups."

"Most people understand the revolution in medicine to be a DNA-centered search for mutations in genes that cause disease. This study illustrates another layer of the revolution - understanding how certain diseases, in this case cancer, are linked to abnormalities in cellular metabolism - an area called ’metabolomics’. We’ve described a unique tumor-associated pattern that we hope will provide new ways to diagnose these poor prognosis cancers earlier and to implement more effective treatments" Gordon says.

The researchers believe that metastatic neuroendocrine tumor cells use GABA signaling processes to communicate with each other and with their environment. "Through carefully planned clinical trials, we may be able to evaluate the therapeutic potential of already available drugs that affect GABA signaling to treat these aggressive types of cancers," says Ippolito.

The association of GABA with aggressive tumors was uncovered by a novel combination of techniques that can now be employed for further identification of substances linked to tumors and other diseases. The resulting information will significantly advance diagnosis and treatment options.

"We used a way to cross from basic sequence information in genomes to information about the substances likely to arise in tumors" says Ippolito.

The research team first analyzed the activity of genes in the mouse tumors using GeneChips, miniaturized arrays of gene sequences, to obtain information about how active each gene in tumors is.

They combined the mouse data with parallel data from 182 human tumors. Then, the gene-activity data was fed into sophisticated software that supplied the researchers with a prediction about which metabolic reactions were revved up in the tumors and which were slowed down. The last piece of the puzzle was supplied by a highly sensitive instrument, called a mass spectrometer, that measured the products of cellular metabolism. The mass spectrometer measurements were cross-checked with the gene activity data and the predictions of metabolic reactions. This set of techniques demonstrated the linkage of abnormal GABA production to aggressive tumors.

"We are able to examine not just genes, not just proteins, but the chemistry that underlies diseased tissues," Gordon says. "Computational, experimental and instrumental tools are now available to tackle metabolomics and then translate lessons learned at the laboratory bench to the patient’s bedside as called for by the University’s BioMed 21 initiative."

BioMed 21 is a strategic research initiative that aims to rapidly translate genomic science into patient care. It includes faculty from the schools of Medicine, Engineering & Applied Science and Arts & Sciences.

Gwen Ericson | EurekAlert!
Further information:
http://www.wustl.edu

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>