Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Human embryonic stem cells have the potential to develop into eggs and sperm in the laboratory

20.06.2005


Scientists in the UK have proved that human embryonic stem cells can develop in the laboratory into the early forms of cells that eventually become eggs or sperm. Their work opens up the possibility that eggs and sperm could be grown from stem cells and used for assisted reproduction, therapeutic cloning and the creation of more stem cells for further research and for the improved treatments for patients suffering from a range of diseases.



Behrouz Aflatoonian will tell the 21st annual conference of the European Society of Human Reproduction and Embryology today (Monday 20 June) that the research also solves the practical and ethical problems associated with obtaining human samples of primordial germ cells (PGCs), which are the ancestral cells that eventually form eggs and sperm (gametes). “Investigating the mechanisms of human primordial germ cell and gamete development is important for understanding the causes of infertility and the potential harmful effects of environmental chemicals on reproductive development,” he will say. “But at present it is very difficult to obtain human samples of these cells as they only occur early in development.”

Mr Aflatoonian, who is a PhD student in Professor Harry Moore’s laboratory at the Centre for Stem Cell Biology, University of Sheffield, UK, said that studies with mice embryonic stem cells had shown that they were capable of differentiating into PGCs and subsequently eggs and sperm, so he set out to see if the same applied to human embryonic stem cells (HESCs).


“We derived six embryonic stem cell lines from embryos donated for research under HFEA regulations by couples undergoing IVF treatment. In addition, we utilised cell lines from the University of Wisconsin.

“The human embryonic stem cells were allowed to develop into collections of cells called embryoid bodies. The embryoid bodies were tested to see which genes were active, or ‘expressed’, in them and it was found that within two weeks a very tiny proportion of cells in the embryoid bodies began to express some of the genes that are found in human primordial germ cells. Some cells also expressed proteins only found in maturing sperm. This suggests that HESCs may have the ability to develop into PGCs and early gametes as has been shown previously for mouse embryonic stem cells.”

However, Mr Aflatoonian stressed that there was still a lot of work to be done before the promise of these early results could be translated into reality. “Embryoid bodies can differentiate into all sorts of tissue types, so we need to choose the cells that are going to develop into PGCs and then work out how we can encourage them to grow into gametes.

“Producing functional gametes is much more difficult, because we have to recreate for the cultured cells the environment of the developing follicle for egg development or the tissue of the testis for sperm. We want to test whether HESCs can differentiate to cells that produce the hormones for sperm and egg development and isolate these as well. What is extraordinary is that the embryoid bodies seem to produce spontaneously the tissue and environment conducive for sperm and egg development in quite a short time in culture.”

Speaking before the conference, Prof Moore said: “One of the reasons for doing this research is that it may allow us to investigate the very earliest processes of how a human gamete and gonad (ovary and testis) develops. Many scientists believe that environmental chemical pollutants that mimic the action of hormones (so called endocrine disrupting chemicals) might interfere with human development at this stage and cause congenital abnormalities, infertility and possibly cancer (in particular testicular cancer). By developing suitable tests with embryonic stem cells as they differentiate to germ cells we can investigate the action of these chemicals in the laboratory.

“Ultimately it might be possible to produce sperm and eggs for use in assisted conception treatments. This is a long way off and we would have to prove it was safe because, for example, the culture process may cause genetic changes. For some men and women this would be the only route for producing sperm and eggs. It would not be reproductive cloning as fertilisation would involve only one set of gametes produced in this way and therefore a unique embryo would form.

“In addition, if we could produce eggs from HESCs they could also be used for therapeutic cloning (somatic nuclear replacement) circumventing the need for eggs from patients who donate them, as this is a major limitation of this technique at the moment. We would then have completed the circle of making HESCs from eggs that came from HESCs – what came first the chicken or the egg?!”

Emma Mason | alfa
Further information:
http://www.eshre.com

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>