Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A link between our body’s energy levels and a protein that wraps our DNA?

20.06.2005


Living organisms need to sense the amount of energy that is available to them and regulate the activity of their genes accordingly. Scientists have made the unexpected finding that a histone protein, which wraps DNA into tight bundles and regulates gene activity, can bind a small molecule produced in our cells. This novel finding in itself was a breakthrough for researchers at the European Molecular Biology Laboratory (EMBL), but what made it more interesting was which specific molecule it binds – one from a pathway known to be linked to obesity and aging.



The EMBL researchers studied a pathway involving an enzyme (Sir2), whose activity is regulated by the availability of nutrients, and an energy molecule (NAD). This pathway, and the enzyme Sir2 in particular, has been heavily investigated because nutrients are known to regulate Sir2’s activity on genes.

“Each enzyme’s job is to turn starting materials into final products. These usually have important functions, but while several scientists have studied the enzyme Sir2, no one has identified a role for one of the final products of the reaction in humans,” says EMBL Group Leader Andreas Ladurner.


When Sir2 binds to NAD, it breaks down the energy molecule into smaller components. What the EMBL researchers found was that one of these components plugs neatly into a special pocket of the histone that the researchers were studying.

This discovery is the first evidence of a small compound binding directly to a histone. As the activity of Sir2 is regulated by the amount of food and nutrients, this finding suggests the existence of a direct link between one of the products of the Sir2 pathway and gene regulation.

“It is very exciting that a histone should be able to recognize one of the compounds that Sir2 produces. We are now looking at how such a small molecule may be able to tweak our genes and therefore our body’s response to changes in the availability of food and energy,” Ladurner says.

Trista Dawson | alfa
Further information:
http://www.embl.de

More articles from Life Sciences:

nachricht Immune Defense Without Collateral Damage
23.01.2017 | Universität Basel

nachricht The interactome of infected neural cells reveals new therapeutic targets for Zika
23.01.2017 | D'Or Institute for Research and Education

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>