Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


A link between our body’s energy levels and a protein that wraps our DNA?


Living organisms need to sense the amount of energy that is available to them and regulate the activity of their genes accordingly. Scientists have made the unexpected finding that a histone protein, which wraps DNA into tight bundles and regulates gene activity, can bind a small molecule produced in our cells. This novel finding in itself was a breakthrough for researchers at the European Molecular Biology Laboratory (EMBL), but what made it more interesting was which specific molecule it binds – one from a pathway known to be linked to obesity and aging.

The EMBL researchers studied a pathway involving an enzyme (Sir2), whose activity is regulated by the availability of nutrients, and an energy molecule (NAD). This pathway, and the enzyme Sir2 in particular, has been heavily investigated because nutrients are known to regulate Sir2’s activity on genes.

“Each enzyme’s job is to turn starting materials into final products. These usually have important functions, but while several scientists have studied the enzyme Sir2, no one has identified a role for one of the final products of the reaction in humans,” says EMBL Group Leader Andreas Ladurner.

When Sir2 binds to NAD, it breaks down the energy molecule into smaller components. What the EMBL researchers found was that one of these components plugs neatly into a special pocket of the histone that the researchers were studying.

This discovery is the first evidence of a small compound binding directly to a histone. As the activity of Sir2 is regulated by the amount of food and nutrients, this finding suggests the existence of a direct link between one of the products of the Sir2 pathway and gene regulation.

“It is very exciting that a histone should be able to recognize one of the compounds that Sir2 produces. We are now looking at how such a small molecule may be able to tweak our genes and therefore our body’s response to changes in the availability of food and energy,” Ladurner says.

Trista Dawson | alfa
Further information:

More articles from Life Sciences:

nachricht Gene therapy shows promise for treating Niemann-Pick disease type C1
27.10.2016 | NIH/National Human Genome Research Institute

nachricht 'Neighbor maps' reveal the genome's 3-D shape
27.10.2016 | International School of Advanced Studies (SISSA)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>