Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A link between our body’s energy levels and a protein that wraps our DNA?

20.06.2005


Living organisms need to sense the amount of energy that is available to them and regulate the activity of their genes accordingly. Scientists have made the unexpected finding that a histone protein, which wraps DNA into tight bundles and regulates gene activity, can bind a small molecule produced in our cells. This novel finding in itself was a breakthrough for researchers at the European Molecular Biology Laboratory (EMBL), but what made it more interesting was which specific molecule it binds – one from a pathway known to be linked to obesity and aging.



The EMBL researchers studied a pathway involving an enzyme (Sir2), whose activity is regulated by the availability of nutrients, and an energy molecule (NAD). This pathway, and the enzyme Sir2 in particular, has been heavily investigated because nutrients are known to regulate Sir2’s activity on genes.

“Each enzyme’s job is to turn starting materials into final products. These usually have important functions, but while several scientists have studied the enzyme Sir2, no one has identified a role for one of the final products of the reaction in humans,” says EMBL Group Leader Andreas Ladurner.


When Sir2 binds to NAD, it breaks down the energy molecule into smaller components. What the EMBL researchers found was that one of these components plugs neatly into a special pocket of the histone that the researchers were studying.

This discovery is the first evidence of a small compound binding directly to a histone. As the activity of Sir2 is regulated by the amount of food and nutrients, this finding suggests the existence of a direct link between one of the products of the Sir2 pathway and gene regulation.

“It is very exciting that a histone should be able to recognize one of the compounds that Sir2 produces. We are now looking at how such a small molecule may be able to tweak our genes and therefore our body’s response to changes in the availability of food and energy,” Ladurner says.

Trista Dawson | alfa
Further information:
http://www.embl.de

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>