Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dinosaur Fossil Bone Leads to Gender, Age Determinations

06.06.2005


It’s a girl … and she’s pregnant!



Paleontologists at North Carolina State University have determined that a 68 million year-old Tyrannosaurus Rex fossil from Montana is that of a young female, and that she was producing eggs when she died.

The proof, they say, is in the bones.


In a case of a literal “lucky break,” the scientists discovered unusual bone tissue lining the hollow cavity of the T. rex’s broken leg bone. In a paper published in the June 3 issue of the journal Science, Dr. Mary Schweitzer, assistant professor of paleontology with a joint appointment at the N.C. Museum of Natural Sciences, and her technician, Jennifer Wittmeyer, along with colleagues at Montana State University, share their findings and say that the presence of this particular tissue provides evidence of the dinosaur’s gender and a connection between the extinct giants and living birds, specifically ostriches and emus.

Schweitzer believes that the unusual tissue inside the T. rex bone is actually medullary bone: a thin layer of highly vascular bone that is found in present-day female birds only during ovulation. This estrogen-linked reproductive bone tissue is laid down inside the hollow leg bones of the birds and persists until the last egg is laid, at which time it is completely resorbed into the bird’s body. Its formation is triggered by an increase in estrogen levels, and the temporary tissue provides the calcium necessary to form eggshells. Medullary bone is only found in present-day female birds; no other egg-laying species – including crocodiles, the other living dinosaur relative – produces this tissue naturally.

Because the dinosaur tissues didn’t look exactly like pictures published of medullary bone in living birds like chicken and quail, Schweitzer’s team compared the tissue from the femur of the T. rex to that taken from leg bones of more primitive ratites, or flightless birds, such as ostriches and emus. These birds share more features with dinosaurs than other present-day birds. They selected an ostrich and an emu in different stages of their laying cycles, when medullary bone is present.

Schweitzer viewed the tissues under both a light and an electron microscope, and found that the dinosaur tissues were virtually identical to those of the modern birds in form, location and distribution. Demineralization – the chemical removal of a bone’s minerals in order to obtain organic material that is much easier to work with in a lab environment – of the samples revealed that the medullary bone from the ostrich and emu was virtually identical in structure, orientation and even color, with that seen in the T. rex.

Since only females produce medullary bone, its presence in the T. rex femur indicates that this fossil was a female, and probably one who died toward the end of her laying cycle. From a biological perspective, the tissue is another link between dinosaurs and living birds.

“The discovery of medullary bone in the T. rex is important because it allows us to objectively sex a dinosaur,” says Schweitzer. “It also adds to the robust support linking birds and dinosaurs and shows that their reproductive physiologies may have been similar. Hopefully we’ll be able to identify features within dinosaurs that will help us determine the gender of our other fossils, and lead to more information about their herd structure or family groups.”

The N.C. Museum of Natural Sciences will soon become the new home of the cast of the thigh bone. “We’re pleased to be able to provide a way for the public to see for themselves evidence that after millions of years, soft tissue can actually be preserved in dinosaur bone,” said Dr. Betsy M. Bennett, museum director. The cast will be placed in the museum’s Paleo Lab along with the complete story of where it was found, how it was excavated and how Schweitzer discovered the unique tissue cells in the hollow.

The research was funded by NC State, the N.C. Museum of Natural Sciences and the National Science Foundation.

Tracey Peake | EurekAlert!
Further information:
http://www.ncsu.edu

More articles from Life Sciences:

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

nachricht CWRU researchers find a chemical solution to shrink digital data storage
22.06.2017 | Case Western Reserve University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>