Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

In those genetically predisposed, ’developmental reprogramming’ could explain cancer risk

31.05.2005


Researchers at The University of Texas M. D. Anderson Cancer Center may have uncovered the reason why some people who are genetically predisposed to hormone-dependent cancers develop the disease as an adult, while others who are similarly susceptible don’t.



In a study to be published on-line in the Proceedings of the National Academy of Sciences (PNAS) the week of May 30, 2005, they show, for the first time, that exposure to a pharmaceutical estrogen during fetal development can permanently "reprogram" tissue in a way that determines whether tumors will develop in adulthood.

While the study was conducted with rats that are susceptible to benign uterine tumors, and the compound used was diethylstilbestrol (DES), a banned estrogenic anti-miscarriage drug, the researchers say their conclusions likely have relevance for humans who inherit defective tumor suppressor genes that make them susceptible to a number of different cancers.


It could explain, for example, why some women who inherited BRCA1/2 gene defects develop breast cancer as adults while other women with the same genes remain disease-free, they say. "The kind of developmental reprogramming we see from this work could represent an important determinate of risk in people genetically susceptible to hormone-dependent tumors, such as uterine, breast and prostate cancer," says the study’s principal investigator, Cheryl Walker, Ph.D., a professor in the Department of Carcinogenesis. "It suggests that for gene-environmental interactions, the timing of the exposure may be critical, and it may happen much earlier than anyone ever suspected," she says.

While more work is needed to make the case that human cancer results in the same way, "we need to open our eyes to the notion that cancer that develops in adults may have been put in motion before a person is born," says the first author, Jennifer Cook, a graduate student who works with Walker at M. D. Anderson’s Science Park Research Division in Smithville, Texas.

The study was designed to challenge the longstanding notion that cancer arises when susceptible individuals are exposed to cancer-triggering compounds or events over the span of their lifetime. To test whether estrogen, found in both the environment and in some drugs, could reprogram tissue early, Walker, Cook and their team designed a study using female rats that are genetically predisposed to development of uterine leiomyoma, the same kind of benign fibroid tumors that many women have. Typically, 65 percent of rats carrying this genetic defect develop the tumors as an adult, and a set of these animals were used as a "control" group.

For the experimental group, researchers used another set of genetically susceptible rats and exposed them to DES, which is highly estrogenic, 3-5 days after they were born - a crucial period in the development of their reproductive tract.

They found that by the time they reached adulthood (16 months), virtually all of the rats in the experimental group had developed leiomyoma, and the tumors were larger and more numerous than in the control group. In contrast, none of the DES-exposed rats that lacked the genetic defect developed tumors by 16 months.

"The DNA of DES-exposed animals had been modified by DES in a way that changed how genes responded to estrogen, causing this tissue to be hypersensitive to the effects of this hormone," Walker says.

The researchers theorize that DES had permanently altered the rat’s normal response to estrogen, a "reprogramming" of the normal physiological responses to estrogen, which led to cancer when the animal had an inherited genetic defect. In that way, DES had changed the "penetrance," or likelihood of causing cancer, of the faulty tumor suppressor gene.

Nancy Jensen | EurekAlert!
Further information:
http://www.mdanderson.org

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>