Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rice unveils ’green’ microcapsule production method

31.05.2005


Mix-and-shake procedure leads to instant glass microbubbles



Chemical engineers from Rice University have developed a fundamentally new approach - the most environmentally sensitive yet devised - for making tiny hollow spheres called microcapsules. Microcapsule research is one of the most active fields in applied nanotechnology, with dozens of companies either developing or using the tiny containers - usually smaller than living cells - to deliver everything from drugs and imaging agents to perfumes and flavor enhancers.

In research appearing on the cover of this month’s issue (Vol. 17, Issue. 9) of the journal Advanced Materials, Michael Wong and his research group describe an approach for making microcapsules that involves mixing a solution of polymer and salt with tiny particles of silica that contain just a few hundred atoms apiece.


Microcapsules are typically made by depositing layers of a coating onto a template or core, which has to be removed to form the hollow center of the structure. The core is usually burned out with high heat processes or dissolved with harsh chemicals. Both processes can damage both the microcapsules and their cargo.

"Our process takes place almost instantaneously, at room temperature, under normal pressure, in water, and at mild pH values," said Wong, assistant professor of chemical and biomolecular engineering, and chemistry. "The spheres naturally become hollow during the self-assembly, which is highly unusual and is an advantage over existing methods."

Wong’s approach has advantages over other microcapsule production methods that involve spraying techniques. While these techniques can be scaled up, it is difficult to adjust the materials properties of the resulting microcapsules.

"We’ve shown that we can tailor the properties of our self-assembled microcapsules - make them smaller, larger, thicker or thinner - simply by changing the ingredients we start with or by adjusting the mixing procedure," Wong said. "The underlying chemistry is so easy to perform that anyone who can pour, mix, and shake can make these microcapsules in less than a minute."

Wong’s process involves ’self-assembly,’ meaning the hollow spheres form spontaneously when the nanoparticle building blocks are mixed with polymer and salt. Because the process takes place in water, any chemical or drug that’s suspended in the water gets trapped inside the hollow sphere when it forms.

Besides encapsulating drugs, flavor compounds and other molecular cargo, Wong’s team hopes to develop their microcapsules for drug delivery. They are already exploring ways - like using changes in pH or temperature - to trigger the microcapsules to open and release drugs. In addition, they’ve made magnetic microcapsules by using iron oxide nanoparticles instead of silica. This could allow doctors to use magnets to precisely position drugs prior to their release.

"We can also use fluorescent nanoparticles called quantum dots to make glowing hollow spheres, which could be useful for combined drug delivery and imaging," Wong said.

Another potential application includes the delivery of medical imaging agents. For example, most contrast agents that doctors use to improve diagnoses from magnetic resonance imaging are highly toxic. If a small quantity can be sealed away in a microcapsule, safe from contact with any living cells, it could alleviate illness and side effects that patients experience today.

The microcapsules could also be used to encapsulate enzymes, complex biomolecules that that govern many cellular processes. Because enzymes are fragile and expensive, engineers would like to protect them during chemical reactions so they can be used many times over.

Wong’s group has shown they can do that to by storing enzymes inside the microcapsules. Their data show that enzymes didn’t leak through the walls of the microcapsules, but smaller molecules did, meaning the enzymes could still carry out their prime function and act as a catalyst for chemical reactions. Wong believes the technology could be used to make micro-bioreactors that could be used in large-scale chemical or drug production.

"In comparison with the other methods of making microcapsules, the scale-up for our process is simple and inexpensive," said Wong. "We believe this gives us a very competitive advantage over competing processes, and a number of companies have expressed an interest in the process."

Jade Boyd | EurekAlert!
Further information:
http://www.rice.edu

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>