Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rice unveils ’green’ microcapsule production method

31.05.2005


Mix-and-shake procedure leads to instant glass microbubbles



Chemical engineers from Rice University have developed a fundamentally new approach - the most environmentally sensitive yet devised - for making tiny hollow spheres called microcapsules. Microcapsule research is one of the most active fields in applied nanotechnology, with dozens of companies either developing or using the tiny containers - usually smaller than living cells - to deliver everything from drugs and imaging agents to perfumes and flavor enhancers.

In research appearing on the cover of this month’s issue (Vol. 17, Issue. 9) of the journal Advanced Materials, Michael Wong and his research group describe an approach for making microcapsules that involves mixing a solution of polymer and salt with tiny particles of silica that contain just a few hundred atoms apiece.


Microcapsules are typically made by depositing layers of a coating onto a template or core, which has to be removed to form the hollow center of the structure. The core is usually burned out with high heat processes or dissolved with harsh chemicals. Both processes can damage both the microcapsules and their cargo.

"Our process takes place almost instantaneously, at room temperature, under normal pressure, in water, and at mild pH values," said Wong, assistant professor of chemical and biomolecular engineering, and chemistry. "The spheres naturally become hollow during the self-assembly, which is highly unusual and is an advantage over existing methods."

Wong’s approach has advantages over other microcapsule production methods that involve spraying techniques. While these techniques can be scaled up, it is difficult to adjust the materials properties of the resulting microcapsules.

"We’ve shown that we can tailor the properties of our self-assembled microcapsules - make them smaller, larger, thicker or thinner - simply by changing the ingredients we start with or by adjusting the mixing procedure," Wong said. "The underlying chemistry is so easy to perform that anyone who can pour, mix, and shake can make these microcapsules in less than a minute."

Wong’s process involves ’self-assembly,’ meaning the hollow spheres form spontaneously when the nanoparticle building blocks are mixed with polymer and salt. Because the process takes place in water, any chemical or drug that’s suspended in the water gets trapped inside the hollow sphere when it forms.

Besides encapsulating drugs, flavor compounds and other molecular cargo, Wong’s team hopes to develop their microcapsules for drug delivery. They are already exploring ways - like using changes in pH or temperature - to trigger the microcapsules to open and release drugs. In addition, they’ve made magnetic microcapsules by using iron oxide nanoparticles instead of silica. This could allow doctors to use magnets to precisely position drugs prior to their release.

"We can also use fluorescent nanoparticles called quantum dots to make glowing hollow spheres, which could be useful for combined drug delivery and imaging," Wong said.

Another potential application includes the delivery of medical imaging agents. For example, most contrast agents that doctors use to improve diagnoses from magnetic resonance imaging are highly toxic. If a small quantity can be sealed away in a microcapsule, safe from contact with any living cells, it could alleviate illness and side effects that patients experience today.

The microcapsules could also be used to encapsulate enzymes, complex biomolecules that that govern many cellular processes. Because enzymes are fragile and expensive, engineers would like to protect them during chemical reactions so they can be used many times over.

Wong’s group has shown they can do that to by storing enzymes inside the microcapsules. Their data show that enzymes didn’t leak through the walls of the microcapsules, but smaller molecules did, meaning the enzymes could still carry out their prime function and act as a catalyst for chemical reactions. Wong believes the technology could be used to make micro-bioreactors that could be used in large-scale chemical or drug production.

"In comparison with the other methods of making microcapsules, the scale-up for our process is simple and inexpensive," said Wong. "We believe this gives us a very competitive advantage over competing processes, and a number of companies have expressed an interest in the process."

Jade Boyd | EurekAlert!
Further information:
http://www.rice.edu

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>