Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biomarkers for interstitial cystitis identified, could lead to the first test

23.05.2005


University of Pittsburgh researchers have isolated two biomarkers for interstitial cystitis (IC), a chronic and painful pelvic disease for which there currently is no test. The discovery of these biomarkers could lead to a definitive test for IC and have the potential to lead to new therapies. Results of two studies are being presented today at the annual meeting of the American Urological Association (AUA) in San Antonio, and are published in abstracts 69 and 80 of the AUA proceedings.



"IC is a frustrating disease for patients because, to this point, there is no accurate way of diagnosing the condition. Patients undergo a variety of tests to rule out other diseases, all while experiencing significant pain and discomfort. Only after these tests come back negative, can a doctor make the diagnosis of IC," said Michael Chancellor, M.D., professor, department of urology, University of Pittsburgh School of Medicine.

"Finding a marker for IC can not only make developing an early test for IC possible, but it can lead to new targeted molecular therapies for the condition," said Fernando de Miguel, Ph.D., assistant professor of urology at Pitt’s School of Medicine.


In the first study, titled "Identification of Nuclear Proteins in the Chronic Cystitic Rat Model" (abstract 69), researchers used a proteomic approach to identify specific markers related to IC. By comparing protein expression in the bladder tissue of two animal models of IC to expression in the tissue of a normal animal, the researchers found three nuclear proteins that were unique to the animals with IC. Using protein mass fingerprinting, the proteins were identified as transgelin (SM-22), ras suppressor protein (RSU-1) and GAPDH.

In the second study, titled "Time-point study of the Regulation of Nuclear Protein SM-22 (Transgelin) in the Rat Cystitis Model" (abstract 80), the researchers expanded their investigation into the expression of SM-22 in both normal and IC-model bladders. The bladders were instilled with hydrochloric acid; tissue was analyzed at one, four, seven, 13 and 28 days after instillation. After day one and day four, there was a noticeable down-regulation of SM-22 in the IC-model bladders; by day 28, there was a reduction by 31 percent of the SM-22 in the diseased models.

The early down-regulation of SM-22, evident as early as day one, shows that the absence of SM-22 can potentially be used as an early diagnostic marker for IC. The University of Pittsburgh researchers plan to conduct more research into SM-22 to determine the protein’s functional role, which could lead the way to future molecular-targeted therapies.

According to the National Institute of Diabetes and Digestive and Kidney Diseases, 700,000 Americans have IC; 90 percent are women. IC is one of the chronic pelvic pain disorders, defined by recurring discomfort or pain in the bladder and surrounding pelvic region. Symptoms vary and can include any combination of mild to severe pain, pressure and tenderness in the bladder and pelvic area; and an urgent and/or frequent need to urinate. In IC, the bladder wall may become scarred or irritated, and pinpoint bleeding may appear on the bladder wall.

Also contributing to this research were Thu-Suong Van Le, Uukio Hayashi, Shachi Tyagi and Naoki Yoshimura, all from the University of Pittsburgh.

Jocelyn Uhl | EurekAlert!
Further information:
http://www.upmc.edu

More articles from Life Sciences:

nachricht Fine organic particles in the atmosphere are more often solid glass beads than liquid oil droplets
21.04.2017 | Max-Planck-Institut für Chemie

nachricht Study overturns seminal research about the developing nervous system
21.04.2017 | University of California - Los Angeles Health Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>