Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Urbanisation Runs In Frogs’ Blood

20.05.2005


A glance at the frog’s skin can say what kind of blood the amphibia has, the blood composition accounting for frog’s capability to get on alongside human beings. The research by the Ural ecologists has been supported by the Russian Foundation for Basic Research.



The crucial importance for the frog is in the light strip on the back along the spinal column. V.L. Vershinin, Doctor of Biology, specialist of the Institute of Plant and Animal Ecology, Ural Branch of Russian Academy of Sciences, has discovered close correlation between availability of the strip, composition of its blood elements and frog’s capability to adapt to urban environment.

The amphibia, the first surface vertebrates, are extremely dependent on the environment. Nevertheless, they can bear all “delights” of urbanization: contaminated water bodies, piped brooks and massive asphalt pavement, so the researchers are trying to understand how the frogs can succeed in that. The blood, one of the most dynamic systems, is the quickest to react to any functional changes taking place in the organism. V.L. Vershinin started his effort from investigation of hematologic properties. In Ekaterinburg, the scientist has spent several years investigating the blood of three species of frogs: moorfrog (Rana arvalis), European common frog (Rana temporaria) and waterfrog (Rana ridibunda). Amphibia were caught within the first two weeks of surface life in the vicinity of water bodies, where tadpoles had developed. Depending on the level of man’s impact, the city was divided into four zones. The first zone, encumbered by multistorey blocks of flats, is almost deprived of lawns and water bodies, and the fourth zone – is a forest park, i.e. the recreaton zone of the citizens.


Having drawn blood samples from several hundreds of frogs, the researchers has come to the conclusion that various species differ from each other in terms of blood cell composition. However, there are common regularities. The frogs from urbanized regions have increased amount of phagocytes and erythrocyte precursor cells. Instead, frogs from clean places have a lot of eosinophiles. This is apparently due to parasites with which amphibia from natural populations are infected much more than urban frogs.

There is no doubt that indices of blood influence frogs’ fitness to urban environment. But the frogs differ in appearance. Some of moorfrogs and waterfrogs have a light strip on the back, and some – do not. This strip is hereditary. Thus, the analysis showed that striped variety initially have more erythrocyte precursor cells in the blood. Therefore, it is easier for striped frogs which got into unfavorable conditions to increase the erythrocyte level up to required level. It is not by chance that in the areas with high human impact, it is particularly striped forms of moorfrogs and waterfrogs that prevail. To all appearances, selection happens at early stages of development. Embryos, which are to become frogs without a stripe, perish more often.

Common European frog, which is by origin close to moorfrog, never has stripes. Obviously, it lost striation in the course of evolution. In the blood of common European frog there are initially few erythrocyte precursor cells, therefore, in contaminated areas the species has to spend a lot of energy to bring the amount of erythrocytes up to the required level. This is a disadvantageous strategy. Ecologists have repeatedly pointed out that common European frog is gradually disappearing from urbanized territories, and the striped variety of moorfrog develops these territories.

Recently, there have been multiple discussions about the necessity for preservation of diversity: biological, genetic and specific one. In V.L. Vershinin’s opinion, the data collected by him clearly demonstrate in what way diversity within the species determines successfulness of its existence. Striped frogs differ from their plain sisters by blood composition. If ecologists had not ascertained that, they would have guessed how the strip along the back helps frogs settle in contaminated urban puddles.

Sergey Komarov | alfa
Further information:
http://www.informnauka.ru

More articles from Life Sciences:

nachricht New type of photosynthesis discovered
17.06.2018 | Imperial College London

nachricht New ID pictures of conducting polymers discover a surprise ABBA fan
17.06.2018 | University of Warwick

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

Im Focus: Water is not the same as water

Water molecules exist in two different forms with almost identical physical properties. For the first time, researchers have succeeded in separating the two forms to show that they can exhibit different chemical reactivities. These results were reported by researchers from the University of Basel and their colleagues in Hamburg in the scientific journal Nature Communications.

From a chemical perspective, water is a molecule in which a single oxygen atom is linked to two hydrogen atoms. It is less well known that water exists in two...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

A sprinkle of platinum nanoparticles onto graphene makes brain probes more sensitive

15.06.2018 | Materials Sciences

100 % Organic Farming in Bhutan – a Realistic Target?

15.06.2018 | Ecology, The Environment and Conservation

Perovskite-silicon solar cell research collaboration hits 25.2% efficiency

15.06.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>