Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene keeps neural cells on correct developmental path

20.05.2005


Embryonic stem cells with identical genomes grow into distinctive tissues, such as heart, bone, and brain. At one time, scientists believed the differences among cell types arose from various sets of genes switched on inside developing cells. Then, studies showed that adult neurons uniquely lack a protein that permanently turns off neuronal genes in the rest of the body’s cells.



Now, it turns out that precursor nerve cells contain that same repressive protein after all. In fact, the protein directs the complex network of genes that transforms an embryonic stem cell into a mature nerve cell, say Howard Hughes Medical Institute (HHMI) researchers.

This new study, published in the May 20, 2005, issue of the journal Cell, may be among the first to track a set of genes from stem cell to differentiated neuron. It also reveals fundamental details of how stem cells retain developmental plasticity.


"A single protein does it all," said Gail Mandel, HHMI investigator at the State University of New York at Stony Brook. "It keeps the genes totally off in non-neuronal tissues, such as skin, where you don’t dare express a neuronal gene. But it also allows the full elaboration of the neuronal phenotype from the precursor cell."

Led by HHMI associate Nurit Ballas, a postdoctoral fellow in Mandel’s lab, the study may advance stem cell research aimed at understanding repairing spinal cord injuries or replacing malfunctioning brain cells in neurodegenerative diseases. It may also provide insights into other diseases, such as small cell lung cancer, which mistakenly make neuronal proteins, or neurological syndromes, where neuronal proteins produced by cancers may trigger the immune cells to attack the nervous system.

The study focuses on a protein called REST, which is short for RE1-silencing transcription factor. It was independently discovered 10 years ago by Mandel’s group and a second team led by HHMI investigator David J. Anderson at Caltech. Mandel created the acronym to describe how REST quiets the nerve genes. The protein is also known by the name Anderson gave it, NRSF, for neuron-restrictive silencer factor.

Since then, they and others have found that REST locks down neuronal genes in other cells by grabbing onto the DNA and cementing in other molecules, an arrangement that stays intact as non-neuronal cells differentiate into liver, muscle, and other tissues.

The new study reports that REST uses a different temporary off mechanism to direct neuronal development. "This study shows that there is more than one way to keep a REST-regulated gene repressed," said Michael G. Rosenfeld, an HHMI investigator at University of California, San Diego, who co-authored an accompanying commentary in Cell with Victoria Lunyak, a research associate in his lab.

In contrast to the tight packaging of neural genes in other cells, REST keeps the chromatin in embryonic stem and precursor neurons open and poised for gene activity.

"REST keeps the brake on lightly until a trigger tells embryonic stem cells it’s time to make a neuron," Mandel said. The cell then triggers the expression of an ensemble of genes that coordinates nervous system development by removing REST in three distinct phases, ending with shutting down the REST gene.

"The cell gets rid of all the excess protein, kicks it off the DNA, then stomps on its head so it can’t make RNA," Mandel said. "We can’t detect REST in the terminally differentiated neuron." But some molecular partners of REST remain, perhaps fine-tuning gene expression in mature neurons, she said.

REST seems to work globally, binding to the starting points of as many as 1,000 genes at once. The gradual loss of REST in differentiating neurons probably orchestrates a precise sequence of genes sensitive to different levels of REST, Mandel speculates.

REST has been a difficult gene to study. Using knockout technology -- a popular technique for determining gene function -- does not work for REST because mice lacking the gene die before they are born. Embryonic stem cells provided a way for Mandel to get around this problem. Unexpectedly, they also revealed fundamental ways in which stem cells remain plastic.

"This paper is like a whole story, beginning with the birth of a neuron and ending with the death of REST," Mandel said.

Jim Keeley | EurekAlert!
Further information:
http://www.hhmi.org

More articles from Life Sciences:

nachricht Unique genome architectures after fertilisation in single-cell embryos
30.03.2017 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>