Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists take aim at virulent bacteria by decoding machinery of key control enzyme

06.05.2005


By deciphering the ingenious mechanism used by a particular enzyme to modify bacterial chromosome chemistry, scientists have come a step closer to designing a new kind of drug that could stop virulent bacterial infections in their tracks. Their research will be published in the May 6 issue of the journal Cell.



Scientists have known for many years that an enzyme called Dam (DNA adenine methyltransferase) plays a role in regulating gene expression in many bacteria. Each time the bacteria reproduce, Dam modifies the A (adenine) nucleotide in the DNA sequence GATC through a chemical reaction known as methylation. Methylation is a biological process used to tag a variety of molecules, including DNA, and is important in cellular processes such as regulating gene expression, DNA replication and repair. In humans DNA methylation occurs on the C (cytosine) rather than the A (adenine) nucleotide.

Recently scientists have discovered a new role for Dam methylation. Dam also is essential for regulating the expression of genes responsible for bacterial virulence. When the gene responsible for Dam is defective, bacteria lose their disease-causing potency. Using the X-ray diffraction facility at the Argonne National Laboratory in Chicago, Xiaodong Cheng, PhD, professor of biochemistry at Emory University School of Medicine and Georgia Research Alliance Eminent Scholar, and John Horton, PhD, Research Assistant Professor, have now solved the co-crystal structure of the Dam enzyme in complex with DNA, which has allowed them to observe exactly how the enzyme finds its target on bacterial DNA.


The Dam enzyme begins by binding non-specifically to DNA, but once it fastens tightly, it glides smoothly down the entire DNA molecule like fingers sliding down a guitar neck searching for the right chord, examining each base pair as it goes. Each time it finds the sequence GATC it stops and methylates the A nucleotide. Dam must move quickly, because if the bacteria reproduce with the wrong methylation pattern, gene expression will be foiled and they will lose their virulence.

"For the first time, using the 3-D crystal structure, we have been able to see the specific Dam structure in action, including the way it binds to the DNA and moves along the base pairs as it recognizes and methylates the A nucleotides," says Dr. Cheng. "Using this information we can potentially design a drug to inhibit this particular enzyme’s chemical reaction or its DNA binding process. This kind of rationally designed drug could be an alternative against infections that are resistant to current antibiotics. And because humans don’t have Dam methylation, this kind of drug would not interfere with important biological processes in humans."

Other coauthors include Dr. Stanley Hattman, professor of biology from University of Rochester, who cloned and sequenced the Dam gene and has been studying the biochemical mechanism of the enzyme and Dr. Albert Jeltsch and his student Kirsten Liebert from International University Bremen in Germany. Dr. Cheng and his colleagues plan to continue their research using structure-based virtual screening techniques and high throughput equipment to screen for potential inhibitor compounds against the Dam enzyme.

Holly Korschun | EurekAlert!
Further information:
http://www.emory.edu

More articles from Life Sciences:

nachricht Historical rainfall levels are significant in carbon emissions from soil
30.05.2017 | University of Texas at Austin

nachricht 3D printer inks from the woods
30.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New Method of Characterizing Graphene

Scientists have developed a new method of characterizing graphene’s properties without applying disruptive electrical contacts, allowing them to investigate both the resistance and quantum capacitance of graphene and other two-dimensional materials. Researchers from the Swiss Nanoscience Institute and the University of Basel’s Department of Physics reported their findings in the journal Physical Review Applied.

Graphene consists of a single layer of carbon atoms. It is transparent, harder than diamond and stronger than steel, yet flexible, and a significantly better...

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

3D printer inks from the woods

30.05.2017 | Life Sciences

How circadian clocks communicate with each other

30.05.2017 | Life Sciences

Graphene and quantum dots put in motion a CMOS-integrated camera that can see the invisible

30.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>