Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists take aim at virulent bacteria by decoding machinery of key control enzyme

06.05.2005


By deciphering the ingenious mechanism used by a particular enzyme to modify bacterial chromosome chemistry, scientists have come a step closer to designing a new kind of drug that could stop virulent bacterial infections in their tracks. Their research will be published in the May 6 issue of the journal Cell.



Scientists have known for many years that an enzyme called Dam (DNA adenine methyltransferase) plays a role in regulating gene expression in many bacteria. Each time the bacteria reproduce, Dam modifies the A (adenine) nucleotide in the DNA sequence GATC through a chemical reaction known as methylation. Methylation is a biological process used to tag a variety of molecules, including DNA, and is important in cellular processes such as regulating gene expression, DNA replication and repair. In humans DNA methylation occurs on the C (cytosine) rather than the A (adenine) nucleotide.

Recently scientists have discovered a new role for Dam methylation. Dam also is essential for regulating the expression of genes responsible for bacterial virulence. When the gene responsible for Dam is defective, bacteria lose their disease-causing potency. Using the X-ray diffraction facility at the Argonne National Laboratory in Chicago, Xiaodong Cheng, PhD, professor of biochemistry at Emory University School of Medicine and Georgia Research Alliance Eminent Scholar, and John Horton, PhD, Research Assistant Professor, have now solved the co-crystal structure of the Dam enzyme in complex with DNA, which has allowed them to observe exactly how the enzyme finds its target on bacterial DNA.


The Dam enzyme begins by binding non-specifically to DNA, but once it fastens tightly, it glides smoothly down the entire DNA molecule like fingers sliding down a guitar neck searching for the right chord, examining each base pair as it goes. Each time it finds the sequence GATC it stops and methylates the A nucleotide. Dam must move quickly, because if the bacteria reproduce with the wrong methylation pattern, gene expression will be foiled and they will lose their virulence.

"For the first time, using the 3-D crystal structure, we have been able to see the specific Dam structure in action, including the way it binds to the DNA and moves along the base pairs as it recognizes and methylates the A nucleotides," says Dr. Cheng. "Using this information we can potentially design a drug to inhibit this particular enzyme’s chemical reaction or its DNA binding process. This kind of rationally designed drug could be an alternative against infections that are resistant to current antibiotics. And because humans don’t have Dam methylation, this kind of drug would not interfere with important biological processes in humans."

Other coauthors include Dr. Stanley Hattman, professor of biology from University of Rochester, who cloned and sequenced the Dam gene and has been studying the biochemical mechanism of the enzyme and Dr. Albert Jeltsch and his student Kirsten Liebert from International University Bremen in Germany. Dr. Cheng and his colleagues plan to continue their research using structure-based virtual screening techniques and high throughput equipment to screen for potential inhibitor compounds against the Dam enzyme.

Holly Korschun | EurekAlert!
Further information:
http://www.emory.edu

More articles from Life Sciences:

nachricht 'Lipid asymmetry' plays key role in activating immune cells
20.02.2018 | Biophysical Society

nachricht New printing technique uses cells and molecules to recreate biological structures
20.02.2018 | Queen Mary University of London

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

'Lipid asymmetry' plays key role in activating immune cells

20.02.2018 | Life Sciences

MRI technique differentiates benign breast lesions from malignancies

20.02.2018 | Medical Engineering

Major discovery in controlling quantum states of single atoms

20.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>