Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists take aim at virulent bacteria by decoding machinery of key control enzyme

06.05.2005


By deciphering the ingenious mechanism used by a particular enzyme to modify bacterial chromosome chemistry, scientists have come a step closer to designing a new kind of drug that could stop virulent bacterial infections in their tracks. Their research will be published in the May 6 issue of the journal Cell.



Scientists have known for many years that an enzyme called Dam (DNA adenine methyltransferase) plays a role in regulating gene expression in many bacteria. Each time the bacteria reproduce, Dam modifies the A (adenine) nucleotide in the DNA sequence GATC through a chemical reaction known as methylation. Methylation is a biological process used to tag a variety of molecules, including DNA, and is important in cellular processes such as regulating gene expression, DNA replication and repair. In humans DNA methylation occurs on the C (cytosine) rather than the A (adenine) nucleotide.

Recently scientists have discovered a new role for Dam methylation. Dam also is essential for regulating the expression of genes responsible for bacterial virulence. When the gene responsible for Dam is defective, bacteria lose their disease-causing potency. Using the X-ray diffraction facility at the Argonne National Laboratory in Chicago, Xiaodong Cheng, PhD, professor of biochemistry at Emory University School of Medicine and Georgia Research Alliance Eminent Scholar, and John Horton, PhD, Research Assistant Professor, have now solved the co-crystal structure of the Dam enzyme in complex with DNA, which has allowed them to observe exactly how the enzyme finds its target on bacterial DNA.


The Dam enzyme begins by binding non-specifically to DNA, but once it fastens tightly, it glides smoothly down the entire DNA molecule like fingers sliding down a guitar neck searching for the right chord, examining each base pair as it goes. Each time it finds the sequence GATC it stops and methylates the A nucleotide. Dam must move quickly, because if the bacteria reproduce with the wrong methylation pattern, gene expression will be foiled and they will lose their virulence.

"For the first time, using the 3-D crystal structure, we have been able to see the specific Dam structure in action, including the way it binds to the DNA and moves along the base pairs as it recognizes and methylates the A nucleotides," says Dr. Cheng. "Using this information we can potentially design a drug to inhibit this particular enzyme’s chemical reaction or its DNA binding process. This kind of rationally designed drug could be an alternative against infections that are resistant to current antibiotics. And because humans don’t have Dam methylation, this kind of drug would not interfere with important biological processes in humans."

Other coauthors include Dr. Stanley Hattman, professor of biology from University of Rochester, who cloned and sequenced the Dam gene and has been studying the biochemical mechanism of the enzyme and Dr. Albert Jeltsch and his student Kirsten Liebert from International University Bremen in Germany. Dr. Cheng and his colleagues plan to continue their research using structure-based virtual screening techniques and high throughput equipment to screen for potential inhibitor compounds against the Dam enzyme.

Holly Korschun | EurekAlert!
Further information:
http://www.emory.edu

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>