Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene Implicated in Chronic Kidney Disease

06.05.2005


Duke University Medical Center researchers have discovered a gene responsible for one form of chronic kidney disease. The disease, called familial focal segmental glomerulosclerosis (FSGS), can lead to complete kidney failure and affects 20 percent of patients on dialysis. The finding could lead to more effective treatments, according to the researchers.



By examining the genetic makeup of one large, multi-generational family with a dominant form of FSGS, the researchers linked a mutant form of the gene called Transient Receptor Potential Cation Channel 6 (TRPC6) to the disease. What’s more, because the gene differs in function from those earlier implicated in FSGS, the finding represents a novel mechanism of kidney damage, said Michelle Winn, M.D., a kidney specialist and geneticist at the Duke Center for Human Genetics and lead author of the study.

Drugs that target the ion channel might offer an effective treatment to slow or prevent scarring of the kidney, the primary manifestation of the disease seen in patients, the researchers said. Such channels are pore-like proteins in the membranes of cells thought to control the flow of calcium.


"This gene represents the first ion channel to be associated with FSGS," Winn said. "It’s a new mechanism for kidney disease, which may allow us to advance on new treatments as ion channels are known to be amenable to drug therapy."

Winn, along with senior authors Jeffery Vance, M.D. and Paul Rosenberg, M.D., also of Duke, published their findings May 5, 2005, in Science Express, the early online version of the journal Science.

In the United States, the prevalence of FSGS is increasing yearly, with a particularly high incidence among African-Americans, Winn said. The disease attacks tiny filtering units within the kidney called glomeruli -- leading to scarring, or hardening, of this filter. Symptoms of the disease include high blood pressure, an excess of protein in the urine, and insufficient elimination of wastes by the kidneys.

Drug therapies for FSGS are limited and non-specific, Winn added. Therefore, the kidney damage forces many patients to rely on hemodialysis, a procedure in which a patient’s blood is fed through a machine. A filter in the dialysis machine removes wastes and extra fluids and returns purified blood to the body. Most dialysis patients undergo the procedure at a clinic three times a week for several hours.

While the causes of FSGS remain unclear, earlier evidence had linked three other genes to FSGS or FSGS-like diseases. The previously identified genes serve in the formation of structural proteins that support the cell membrane. In 1999, the Duke team identified a region of the genome linked to FSGS in a large New Zealand family.

In the current study, the researchers narrowed that span to the single gene, TRPC6, by screening 106 members of the seven-generation, 600-member family, including individuals with and without the disease.

In this family, all members with FSGS carry a mutation in the TRPC6 gene, the team reported. Further study of the gene variant in kidney cell cultures found that the mutation enhances the activity of the channels in response to angiotensin II, a protein known to promote high blood pressure and kidney injury, Winn said.

While TRPC6 mutations have yet to be reported in other families with hereditary FSGS, the findings raise a number of questions about the role of the channels in kidney function.

The channels may also offer a new target for kidney disease treatment, according to the researchers.

"Because channels tend to be amenable to pharmacological manipulation, our study raises the possibility that TRPC6 may be a useful therapeutic target in chronic kidney disease," Winn said.

The researchers have begun a broader genomic screen of additional families from around the world to further examine genetic mechanisms in FSGS.

Collaborators on the study include Merry Kay Farrington, April Hawkins, Nikki Daskalakis, Shu Ying Kwan, Seth Ebersviller, Margaret Pericak-Vance, Tony Creazzo and James Burchette, of Duke; Peter Conlon, of Beaumont Hospital in Dublin, Ireland; and Kelvin Lynn, of Christchurch Hospital in Christchurch, New Zealand. The National Institutes of Health supported the research.

Kendall Morgan | EurekAlert!
Further information:
http://www.duke.edu

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>