Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How monarch butterflies are wired for navigation

06.05.2005


In their extraordinary annual migration from North America to Mexico, monarch butterflies are known to use the angle of polarized sunlight as a celestial guide to help them keep to a straight and true path southward. But details of their navigational machinery have remained a mystery.



Now, researchers, led by Steven Reppert of University of Massachusetts Medical School, Ivo Sauman of the Czech Academy of Sciences and Adriana Briscoe of the University of California at Irvine, have explored the infinitesimal butterfly brain to uncover new insights into that machinery. Their findings show that the same ultraviolet light that has become an anathema to cancer-wary humans is critical for butterfly navigation. Also, the researchers were surprised to discover a key wiring connection between the light-detecting navigation sensors in the butterfly’s eye and the creature’s circadian clock--a critical link if the butterflies are to compensate for the time of day in using their "sun compass."

The researchers’ techniques include molecular analysis of butterfly brain proteins, as well as flight tests in which the scientists manipulated the light reaching their insect subjects and measured the navigational response.


In their studies, the researchers discovered that ultraviolet photoreceptors dominated in the region of the butterfly visual system known to specialize in polarized light detection. To confirm that the butterflies, indeed, required ultraviolet polarized light to navigate, the researchers tested the insects in a "flight simulator," in which they could control the light polarization and thus influence the butterflies’ direction of flight. The researchers found that when they placed a UV-interference filter over the polarized light source, the butterflies lost their orientation response.

The researchers also pinpointed the location of the circadian clock in the butterfly brain. Such circadian clocks govern the approximately 24 hour activity and metabolic cycles of animals from the simplest insects to humans. Reppert and his colleagues found that key genes responsible for the clock’s molecular "ticks" were expressed in a brain region called the dorsolateral protocerebrum. Using tracer molecules, they were surprised to discover tiny neural fibers containing a key clock protein that connected with the polarization photoreceptors in the butterfly eye.

"This pathway has not been described in any other insect, and it may be a hallmark feature of butterflies that use a time-compensated sun compass," wrote the researchers. They also speculated that another such clock-related pathway of fibers they detected between two regions of the butterfly brain may play a role in regulating the insects’ hormonal system, to induce the longevity that enables the butterfly to extend its survival in its overwintering grounds in Mexico.

Heidi Hardman | EurekAlert!
Further information:
http://www.cell.com

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>