Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How monarch butterflies are wired for navigation

06.05.2005


In their extraordinary annual migration from North America to Mexico, monarch butterflies are known to use the angle of polarized sunlight as a celestial guide to help them keep to a straight and true path southward. But details of their navigational machinery have remained a mystery.



Now, researchers, led by Steven Reppert of University of Massachusetts Medical School, Ivo Sauman of the Czech Academy of Sciences and Adriana Briscoe of the University of California at Irvine, have explored the infinitesimal butterfly brain to uncover new insights into that machinery. Their findings show that the same ultraviolet light that has become an anathema to cancer-wary humans is critical for butterfly navigation. Also, the researchers were surprised to discover a key wiring connection between the light-detecting navigation sensors in the butterfly’s eye and the creature’s circadian clock--a critical link if the butterflies are to compensate for the time of day in using their "sun compass."

The researchers’ techniques include molecular analysis of butterfly brain proteins, as well as flight tests in which the scientists manipulated the light reaching their insect subjects and measured the navigational response.


In their studies, the researchers discovered that ultraviolet photoreceptors dominated in the region of the butterfly visual system known to specialize in polarized light detection. To confirm that the butterflies, indeed, required ultraviolet polarized light to navigate, the researchers tested the insects in a "flight simulator," in which they could control the light polarization and thus influence the butterflies’ direction of flight. The researchers found that when they placed a UV-interference filter over the polarized light source, the butterflies lost their orientation response.

The researchers also pinpointed the location of the circadian clock in the butterfly brain. Such circadian clocks govern the approximately 24 hour activity and metabolic cycles of animals from the simplest insects to humans. Reppert and his colleagues found that key genes responsible for the clock’s molecular "ticks" were expressed in a brain region called the dorsolateral protocerebrum. Using tracer molecules, they were surprised to discover tiny neural fibers containing a key clock protein that connected with the polarization photoreceptors in the butterfly eye.

"This pathway has not been described in any other insect, and it may be a hallmark feature of butterflies that use a time-compensated sun compass," wrote the researchers. They also speculated that another such clock-related pathway of fibers they detected between two regions of the butterfly brain may play a role in regulating the insects’ hormonal system, to induce the longevity that enables the butterfly to extend its survival in its overwintering grounds in Mexico.

Heidi Hardman | EurekAlert!
Further information:
http://www.cell.com

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>