Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


How monarch butterflies are wired for navigation


In their extraordinary annual migration from North America to Mexico, monarch butterflies are known to use the angle of polarized sunlight as a celestial guide to help them keep to a straight and true path southward. But details of their navigational machinery have remained a mystery.

Now, researchers, led by Steven Reppert of University of Massachusetts Medical School, Ivo Sauman of the Czech Academy of Sciences and Adriana Briscoe of the University of California at Irvine, have explored the infinitesimal butterfly brain to uncover new insights into that machinery. Their findings show that the same ultraviolet light that has become an anathema to cancer-wary humans is critical for butterfly navigation. Also, the researchers were surprised to discover a key wiring connection between the light-detecting navigation sensors in the butterfly’s eye and the creature’s circadian clock--a critical link if the butterflies are to compensate for the time of day in using their "sun compass."

The researchers’ techniques include molecular analysis of butterfly brain proteins, as well as flight tests in which the scientists manipulated the light reaching their insect subjects and measured the navigational response.

In their studies, the researchers discovered that ultraviolet photoreceptors dominated in the region of the butterfly visual system known to specialize in polarized light detection. To confirm that the butterflies, indeed, required ultraviolet polarized light to navigate, the researchers tested the insects in a "flight simulator," in which they could control the light polarization and thus influence the butterflies’ direction of flight. The researchers found that when they placed a UV-interference filter over the polarized light source, the butterflies lost their orientation response.

The researchers also pinpointed the location of the circadian clock in the butterfly brain. Such circadian clocks govern the approximately 24 hour activity and metabolic cycles of animals from the simplest insects to humans. Reppert and his colleagues found that key genes responsible for the clock’s molecular "ticks" were expressed in a brain region called the dorsolateral protocerebrum. Using tracer molecules, they were surprised to discover tiny neural fibers containing a key clock protein that connected with the polarization photoreceptors in the butterfly eye.

"This pathway has not been described in any other insect, and it may be a hallmark feature of butterflies that use a time-compensated sun compass," wrote the researchers. They also speculated that another such clock-related pathway of fibers they detected between two regions of the butterfly brain may play a role in regulating the insects’ hormonal system, to induce the longevity that enables the butterfly to extend its survival in its overwintering grounds in Mexico.

Heidi Hardman | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Molecular doorstop could be key to new tuberculosis drugs
20.03.2018 | Rockefeller University

nachricht Modified biomaterials self-assemble on temperature cues
20.03.2018 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Physicists made crystal lattice from polaritons

20.03.2018 | Physics and Astronomy

Mars' oceans formed early, possibly aided by massive volcanic eruptions

20.03.2018 | Physics and Astronomy

Thawing permafrost produces more methane than expected

20.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>