Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


DNA solves mystery of Gibraltar’s macaques


Research will help manage populations of macaques, a threatened species of primate

A Gibraltar macaque Photo by Robert D. Martin, Courtesy of The Field Museum

A Gibraltar macaque Photo by Robert D. Martin, Courtesy of The Field Museum

After decades of speculation, the origin of Gibraltar’s famous Barbary macaques has been determined. The only free-ranging monkeys in all of Europe, Gibraltar’s 200 or so semi-wild macaques enjoy the run of the hillsides in this British territory – much to the delight of millions of tourists, as well as to the chagrin of some officials responsible for their management.

There were not always, however, this many macaques on Gibraltar, which serves as a gateway to the Mediterranean Sea. In 1942, after the population dwindled to almost nothing, British Prime Minister Winston Churchill ordered that their numbers be replenished due to a traditional belief that Britain would lose Gibraltar if the macaques there ever died out. The clandestine move was taken to bolster Britain’s morale during World War II. Ever since, scientists have wondered exactly where the macaques came from.

Now, an analysis of mitochondrial DNA from 280 individual samples reveals that the macaques on Gibraltar descended from founders taken from forest fragments in both Morocco and Algeria. The embargoed research will be published in the Early Edition of the Proceedings of the National Academy of Sciences ( on April 25, 2005. It will appear subsequently in PNAS’ print version at a date yet to be determined.

"Our project was designed as a test case for conservation genetics," said Robert D. Martin, a primatologist, Field Museum Provost, and co-author of the study. "The Gibraltar colony of Barbary macaques provided an ideal example of genetic isolation of a small population, which is now a regular occurrence among wild primate populations because of forest fragmentation. To our surprise, we found a relatively high level of genetic variability in the Gibraltar macaques. This is now explained by our conclusion that the population was founded with individuals from two genetically distinct populations in Algeria and Morocco."

Key to study: mitochondrial DNA

In mammals, mitochondrial DNA is inherited exclusively from the female, so it can be analyzed to determine matrilineal origins. This is especially relevant with mammals, such as macaques, that practice female philopatry, a social system in which females remain in their birth groups while males migrate between groups.

The research first identified 24 different haplotypes in the Algerian and Moroccan colonies of macaques. Each mitochondrial haplotype is identified by means of a specific DNA sequence.

Since the Algerian and Moroccan haplotypes are clearly distinct, evidence of any given haplotype in the mitochondrial DNA of Gibraltar macaques would indicate that they descended from the geographical population with that haplotype. It had long been thought that the Gibraltar macaques were exclusively derived from founders imported from Morocco. In fact, both Algerian and Moroccan haplotypes were found among the Gibraltar macaques, indicating that the Gibraltar colony was founded by female macaques from both regions.

There are 19 species of macaques, which have proven to be remarkably adaptable. In fact, macaques are found in more climates and habitats than any other primate except, of course, humans.

The Barbary macaque, M. sylvanus, is the only species that lives naturally in Africa; all other species live in Asia. Some scientists believe the Barbary macaques were first brought to Gibraltar by the Moors, who occupied Spain between 711 and 1492. On the other hand, it’s possible that the original Gibraltar macaques were a remnant of populations that had spread throughout Southern Europe during the Pliocene, up to 5.5 million years ago.

About 20 years ago, scientists estimated there were 20,000 Barbary macaques in Africa. Today, the wild population is only half that number, which led the World Conservation Union in 2002 to include the Barbary macaque as "vulnerable" on its Red List of Threatened Species.

The research also indicated that the initial split between two main subgroups of M. sylvanus occurred about 1.6 million years ago. The other co-authors of the study are Lara Modolo at the Anthropological Institute of the University of Zurich in Switzerland, who conducted all of the laboratory work on the DNA samples, and Walter Salzburger at the University of Konstanz in Germany.

"Our findings reveal that the Algerian and Moroccan populations are genetically very distinct and that there are major genetic differences even within Algeria," Modolo said. "Mixing of founders from Algeria and Morocco explains why the Gibraltar macaques have kept a surprisingly high level of genetic variability despite a long period of isolation.

"At the same time, the large degree of genetic difference seen between various wild populations tells us that we should be cautious about translocating animals from one area to another," she added. "This is just one of the lessons for conservation biology to be learned from this study."

Greg Borzo | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>