Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

DNA solves mystery of Gibraltar’s macaques

26.04.2005


Research will help manage populations of macaques, a threatened species of primate


A Gibraltar macaque Photo by Robert D. Martin, Courtesy of The Field Museum


A Gibraltar macaque Photo by Robert D. Martin, Courtesy of The Field Museum



After decades of speculation, the origin of Gibraltar’s famous Barbary macaques has been determined. The only free-ranging monkeys in all of Europe, Gibraltar’s 200 or so semi-wild macaques enjoy the run of the hillsides in this British territory – much to the delight of millions of tourists, as well as to the chagrin of some officials responsible for their management.

There were not always, however, this many macaques on Gibraltar, which serves as a gateway to the Mediterranean Sea. In 1942, after the population dwindled to almost nothing, British Prime Minister Winston Churchill ordered that their numbers be replenished due to a traditional belief that Britain would lose Gibraltar if the macaques there ever died out. The clandestine move was taken to bolster Britain’s morale during World War II. Ever since, scientists have wondered exactly where the macaques came from.


Now, an analysis of mitochondrial DNA from 280 individual samples reveals that the macaques on Gibraltar descended from founders taken from forest fragments in both Morocco and Algeria. The embargoed research will be published in the Early Edition of the Proceedings of the National Academy of Sciences (http://www.pnas.org/papbyrecent.shtml) on April 25, 2005. It will appear subsequently in PNAS’ print version at a date yet to be determined.

"Our project was designed as a test case for conservation genetics," said Robert D. Martin, a primatologist, Field Museum Provost, and co-author of the study. "The Gibraltar colony of Barbary macaques provided an ideal example of genetic isolation of a small population, which is now a regular occurrence among wild primate populations because of forest fragmentation. To our surprise, we found a relatively high level of genetic variability in the Gibraltar macaques. This is now explained by our conclusion that the population was founded with individuals from two genetically distinct populations in Algeria and Morocco."

Key to study: mitochondrial DNA

In mammals, mitochondrial DNA is inherited exclusively from the female, so it can be analyzed to determine matrilineal origins. This is especially relevant with mammals, such as macaques, that practice female philopatry, a social system in which females remain in their birth groups while males migrate between groups.

The research first identified 24 different haplotypes in the Algerian and Moroccan colonies of macaques. Each mitochondrial haplotype is identified by means of a specific DNA sequence.

Since the Algerian and Moroccan haplotypes are clearly distinct, evidence of any given haplotype in the mitochondrial DNA of Gibraltar macaques would indicate that they descended from the geographical population with that haplotype. It had long been thought that the Gibraltar macaques were exclusively derived from founders imported from Morocco. In fact, both Algerian and Moroccan haplotypes were found among the Gibraltar macaques, indicating that the Gibraltar colony was founded by female macaques from both regions.

There are 19 species of macaques, which have proven to be remarkably adaptable. In fact, macaques are found in more climates and habitats than any other primate except, of course, humans.

The Barbary macaque, M. sylvanus, is the only species that lives naturally in Africa; all other species live in Asia. Some scientists believe the Barbary macaques were first brought to Gibraltar by the Moors, who occupied Spain between 711 and 1492. On the other hand, it’s possible that the original Gibraltar macaques were a remnant of populations that had spread throughout Southern Europe during the Pliocene, up to 5.5 million years ago.

About 20 years ago, scientists estimated there were 20,000 Barbary macaques in Africa. Today, the wild population is only half that number, which led the World Conservation Union in 2002 to include the Barbary macaque as "vulnerable" on its Red List of Threatened Species.

The research also indicated that the initial split between two main subgroups of M. sylvanus occurred about 1.6 million years ago. The other co-authors of the study are Lara Modolo at the Anthropological Institute of the University of Zurich in Switzerland, who conducted all of the laboratory work on the DNA samples, and Walter Salzburger at the University of Konstanz in Germany.

"Our findings reveal that the Algerian and Moroccan populations are genetically very distinct and that there are major genetic differences even within Algeria," Modolo said. "Mixing of founders from Algeria and Morocco explains why the Gibraltar macaques have kept a surprisingly high level of genetic variability despite a long period of isolation.

"At the same time, the large degree of genetic difference seen between various wild populations tells us that we should be cautious about translocating animals from one area to another," she added. "This is just one of the lessons for conservation biology to be learned from this study."

Greg Borzo | EurekAlert!
Further information:
http://www.fieldmuseum.org

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>