Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Deciphering DiGeorge syndrome

01.03.2005


Big advances in understanding microdeletions



A collaboration of European scientists has uncovered new insight into the most common chromosomal microdeletion syndrome in humans. The research group, headed by Dr. Lukas Sommer at the Swiss Federal Institute of Technology, has identified a heretofore unknown role for the TGF cell-to-cell signaling pathway in the pathogenesis of DiGeorge syndrome. By elucidating the genetic mechanism that drives DiGeorge syndrome, Dr. Sommer and colleagues are helping establish a foundation for the future design of therapies to better identify and treat this disease. "We now show that the growth factor TGF is a key signal for normal neural crest development: genetic inactivation of TGF signaling in mouse neural crest stem cells prevents neural crest cell differentiation and recapitulates all morphological features of DiGeorge syndrome," explains Dr. Sommer.

Their report will be published in the March 1 issue of the scientific research journal Genes & Development. DiGeorge syndrome is a congenital disease that annually affects about 1 in 4000 live births. DiGeorge patients display a broad range of symptoms, which may include cardiac defects, immunodeficiency, craniofacial malformations, learning disabilities, and psychiatric problems. DiGeorge patients are generally missing a small portion of chromosome 22. The genes which would normally reside on this area of the chromosome, but which are deleted in DiGeorge patients, direct embryonic development of the pharyngeal arches, an area of the fetus containing so-called "neural crest cells."


The neural crest is a group of cells that, during embryogenesis, segregates into smaller cell clusters and migrate to diverse locations within the embryo. Depending upon location, neural crest cells give rise to most of the peripheral nervous system, as well as various non-neural tissues, like craniofacial bone and cartilage, the thymus and parathyroid glands, and the cardiac outflow tract – in short, all of the tissues that are affected in DiGeorge syndrome.

While embryologists have long known what structures the neural crest contributes to, little is known about the molecular cues that guide this process. Dr. Sommer and colleagues set out to investigate the role of the TGF signaling pathway (already well-known for its role in regulating cell growth and proliferation in other cellular contexts) in the neural crest.

The researchers engineered a strain of mice to specifically lack a TGF receptor in their neural crest stem cells, thereby inactivating TGF signaling in the developing neural crest. Dr. Sommer and colleagues observed that these mice recapitulated all of the defects seen in DiGeorge patients: craniofacial, cardiac, thymic and parathyroid defects.

While neither TGF receptors nor ligands are housed in the deleted region of chromosome 22, Dr. Sommer and colleagues did identify that a protein called CrkL,which is encoded within that region and has been implicated in the development of DiGeorge syndrome, interacts with TGF signaling. The authors speculate that the deletion of CrkL in DiGeorge patients disrupts TGF signal activation and prevents normal development of the neural crest. Dr. Sommer and colleagues not only establish that TGF is a key signal in specifying non-neural cell fates from the neural crest, but they also link defects in TGF signaling to the development of DiGeorge syndrome.

Dr. Sommer is confident that "our mouse model system provides a molecular basis for the clinical findings of DiGeorge syndrome, indicating that TGF signal modulation in neural crest differentiation plays a crucial role in the etiology of this disease."

Heather Cosel | EurekAlert!
Further information:
http://www.cshl.edu

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>