Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

’Venom doc’ tracks down snake bioweapons

01.03.2005


Evolutionary analysis of snake venom reveals that toxin proteins arose from multiple body tissues



Bryan Grieg Fry, Ph.D., a scientist from the University of Melbourne, Australia, has conducted the first comprehensive analysis of the origin and evolution of one of nature’s most sophisticated bioweapons: snake venom. His results are reported in the March issue of the journal Genome Research. Venomous snakes, all of which belong to the superfamily Colubroidea, evolved glands for the storage and dispersal of their saliva approximately 60-80 million years ago. Since that time, various prey-immobilizing toxins have evolved from innocuous proteins that were normally produced in other body tissues.

Scientists believe that snakes, rather than simply tweaking proteins already expressed in their saliva, recruited and altered proteins for their chemical arsenal from other body tissues. This enabled snakes to develop more specific, highly potent toxins, ones that would cause their victims’ bodies to turn against themselves upon injection. Over time, these newly derived toxins became a normal part of the saliva protein repertoire. To date, 24 different snake venom toxins have been characterized by scientists, but the evolutionary history – or tissue origin – of these proteins has not been documented.


In his March 2005 Genome Research article, Fry, the Deputy Director of the Australian Venom Research Unit, identified the origin of the 24 known snake toxin types. Surprisingly, rather than being saliva-modified proteins, 21 of the toxins were shown to have been originally derived from proteins normally expressed in other body tissues, including brain, eye, lung, heart, liver, muscle, mammary gland, ovary, and testis.

Only two of the toxins were derived from proteins presumably expressed in ancient reptile saliva. Both of these toxin types, CRISP and kallikrein, are closely related to toxins called helothermine and gilatoxin, which are produced by the Beaded Lizard and the Gila Monster, respectively.

One of the toxins in this study (called the waglerin peptide) did not exhibit any similarity to known proteins. Fry believes that it may be a reptile-specific protein. "The wide-ranging origins of snake venom toxin - body counterparts explain the amazing diversity of ways that venomous snakes can kill their prey and why they have so much potential use in medical research," Fry explains.

Fry hopes that his findings will further research efforts focused on the use of snake toxins for therapy and treatment of diseases, including cancer, arthritis, and heart disease. "There is something peculiarly fascinating in the use of a deadly toxin as a life-saving medicine," Fry says. "The natural pharmacology that exists within animal venoms is a tremendous resource waiting to be tapped."

By comparing the amino acid sequence of each toxin to the amino acid sequences of multiple proteins from non-venomous tissues, Fry was able to reconstruct the phylogenetic history of each snake venom constituent. He determined which protein family each toxin type belonged to, and based the normal expression pattern of that protein family, he predicted from which tissue type each toxin protein had been derived.

Despite the differences in tissue origin, Fry observed that all toxins were derived from protein families with secretory function. This means that the proteins were produced in a specific tissue type and later transported out of that tissue, a necessary biochemical characteristic for saliva production in the snake venom glands.

Fry also observed that the proteins most frequently recruited and modified into toxins where those with a very stable molecular structure – those that are rich in the amino acid cysteine, which enables proteins to form intramolecular disulfide linkages. "These structures provided an excellent framework for the 60-80 million years of ’evolutionary tinkering’ that have turned these proteins into potent, highly specific snake venom toxins," Fry concluded.

Maria A. Smit | EurekAlert!
Further information:
http://www.cshl.edu

More articles from Life Sciences:

nachricht Fine organic particles in the atmosphere are more often solid glass beads than liquid oil droplets
21.04.2017 | Max-Planck-Institut für Chemie

nachricht Study overturns seminal research about the developing nervous system
21.04.2017 | University of California - Los Angeles Health Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>