Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

’Venom doc’ tracks down snake bioweapons

01.03.2005


Evolutionary analysis of snake venom reveals that toxin proteins arose from multiple body tissues



Bryan Grieg Fry, Ph.D., a scientist from the University of Melbourne, Australia, has conducted the first comprehensive analysis of the origin and evolution of one of nature’s most sophisticated bioweapons: snake venom. His results are reported in the March issue of the journal Genome Research. Venomous snakes, all of which belong to the superfamily Colubroidea, evolved glands for the storage and dispersal of their saliva approximately 60-80 million years ago. Since that time, various prey-immobilizing toxins have evolved from innocuous proteins that were normally produced in other body tissues.

Scientists believe that snakes, rather than simply tweaking proteins already expressed in their saliva, recruited and altered proteins for their chemical arsenal from other body tissues. This enabled snakes to develop more specific, highly potent toxins, ones that would cause their victims’ bodies to turn against themselves upon injection. Over time, these newly derived toxins became a normal part of the saliva protein repertoire. To date, 24 different snake venom toxins have been characterized by scientists, but the evolutionary history – or tissue origin – of these proteins has not been documented.


In his March 2005 Genome Research article, Fry, the Deputy Director of the Australian Venom Research Unit, identified the origin of the 24 known snake toxin types. Surprisingly, rather than being saliva-modified proteins, 21 of the toxins were shown to have been originally derived from proteins normally expressed in other body tissues, including brain, eye, lung, heart, liver, muscle, mammary gland, ovary, and testis.

Only two of the toxins were derived from proteins presumably expressed in ancient reptile saliva. Both of these toxin types, CRISP and kallikrein, are closely related to toxins called helothermine and gilatoxin, which are produced by the Beaded Lizard and the Gila Monster, respectively.

One of the toxins in this study (called the waglerin peptide) did not exhibit any similarity to known proteins. Fry believes that it may be a reptile-specific protein. "The wide-ranging origins of snake venom toxin - body counterparts explain the amazing diversity of ways that venomous snakes can kill their prey and why they have so much potential use in medical research," Fry explains.

Fry hopes that his findings will further research efforts focused on the use of snake toxins for therapy and treatment of diseases, including cancer, arthritis, and heart disease. "There is something peculiarly fascinating in the use of a deadly toxin as a life-saving medicine," Fry says. "The natural pharmacology that exists within animal venoms is a tremendous resource waiting to be tapped."

By comparing the amino acid sequence of each toxin to the amino acid sequences of multiple proteins from non-venomous tissues, Fry was able to reconstruct the phylogenetic history of each snake venom constituent. He determined which protein family each toxin type belonged to, and based the normal expression pattern of that protein family, he predicted from which tissue type each toxin protein had been derived.

Despite the differences in tissue origin, Fry observed that all toxins were derived from protein families with secretory function. This means that the proteins were produced in a specific tissue type and later transported out of that tissue, a necessary biochemical characteristic for saliva production in the snake venom glands.

Fry also observed that the proteins most frequently recruited and modified into toxins where those with a very stable molecular structure – those that are rich in the amino acid cysteine, which enables proteins to form intramolecular disulfide linkages. "These structures provided an excellent framework for the 60-80 million years of ’evolutionary tinkering’ that have turned these proteins into potent, highly specific snake venom toxins," Fry concluded.

Maria A. Smit | EurekAlert!
Further information:
http://www.cshl.edu

More articles from Life Sciences:

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

nachricht When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short
23.03.2017 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

NASA examines Peru's deadly rainfall

24.03.2017 | Earth Sciences

What does congenital Zika syndrome look like?

24.03.2017 | Health and Medicine

Steep rise of the Bernese Alps

24.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>