Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UAB scientists discover the origin of a mysterious force

01.03.2005


Scientists at the Universitat Autònoma de Barcelona and Imperial College London have discovered the origin of hydration force, a phenomenon that causes some complex chemical and biochemical species (including DNA and other electrostatically charged molecules) to repel at short distances when surrounded by water. Through this research, improvements could be made to the design of chemical products used in the chemical, pharmaceutical and food industry.



Ever since the 1970s, scientists have been trying to establish the cause of a repulsive force occurring between different electrostatically charged molecules, such as DNA and other biomolecules, when they are very close to each other in aqueous media. This force became know as hydration force.

Jordi Faraudo, a researcher for the Department of Physics at the Universitat Autònoma de Barcelona, and Fernando Bresme of the Department of Chemistry at Imperial College London have studied this mysterious force in detail and have discovered where its origins lie.


In the same way that a flag flutters in the direction the wind is blowing, at a microscopic level water molecules are gently attracted towards the direction in which an electric field is pointing. However, when the water is in contact with surfaces that create small electric fields, such as chemical compounds like those found in many detergents, this is no longer the case: the water molecules have a remarkable capacity to organise themselves into complex structures that are strongly orientated in such a way as to cancel out the electric field, and on some occasions, to reverse it. This abnormal behaviour was discovered by the same researchers and published in Physical Review Letters in April 2004.

The scientists have now discovered that this strange property is responsible for the hydration force that acts when water is surrounded by certain types of electrostatically charged molecules, such as DNA and some biological compounds, and when thin films form in detergents. The discovery has been published in today’s edition of Physical Review Letters.

Water is the solvent in which most physical, chemical and biological processes take place. Therefore, it is essential to understand the nature of interactions between molecules dissolved in water in order to understand many of these processes. Two of the most important of these processes are the adherence of substances to cell membranes and the withdrawal of proteins. Both of these are fundamental in biomedical research, since a substantial part of the process of designing new drugs is based on understanding how substances penetrate cell membranes to enter cells. These drugs are often proteins designed to prevent or strengthen the action of other substances. In these cases, accurately identifying the protein folding is essential, since the form these proteins take on when they fold influences how effectively they are able to act.

Fully understanding the properties of this force that occurs when molecules surrounded by water adhere to each other is also useful in the chemical industry, particularly when involving mechanisms in which colloidal suspensions must be stabilised, such as the mechanisms used to produce paints, cosmetics and food products such as yoghurt and mayonnaise.

Octavi López Coronado | alfa
Further information:
http://www.uab.es
http://www.uab.es/uabdivulga/eng

More articles from Life Sciences:

nachricht Nesting aids make agricultural fields attractive for bees
20.07.2017 | Julius-Maximilians-Universität Würzburg

nachricht The Kitchen Sponge – Breeding Ground for Germs
20.07.2017 | Hochschule Furtwangen

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

Leipzig HTP-Forum discusses "hydrothermal processes" as a key technology for a biobased economy

12.07.2017 | Event News

 
Latest News

Researchers create new technique for manipulating polarization of terahertz radiation

20.07.2017 | Information Technology

High-tech sensing illuminates concrete stress testing

20.07.2017 | Materials Sciences

First direct observation and measurement of ultra-fast moving vortices in superconductors

20.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>