Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Molecular machine may lead to new drugs to combat human diseases


The crystallized form of a molecular machine that can cut and paste genetic material is revealing possible new paths for treating diseases such as some forms of cancer and opportunistic infections that plague HIV patients.

Purdue University researchers froze one of these molecular machines, which are chemical complexes known as a Group I intron, at mid-point in its work cycle. When frozen, crystallized introns reveal their structure and the sites at which they bind with various molecules to cause biochemical reactions. Scientists can use this knowledge to manipulate the intron to splice out malfunctioning genes, said Barbara Golden, associate professor of biochemistry. Normal genes then can take over without actually changing the genetic code.

The results of the Purdue study are published in the January issue of the journal Nature Structural and Molecular Biology. "In terms of human health, Group I introns are interesting because they cause their own removal and also splice the ends of the surrounding RNA together, forming a functional gene," Golden said. "We can design introns and re-engineer them so they will do this to RNA in which we’re interested."

Once thought of as genetic junk, introns are bits of DNA that can activate their own removal from RNA, which translates DNA’s directions for gene behavior. Introns then splice the RNA back together. Scientists are just learning whether many DNA sequences previously believed to have no function actually may play specialized roles in cell behavior.

While humans have introns, they don’t have Group I introns. Many pathogens that cause human diseases, however, do have Group I introns, including the HIV opportunistic infections pneumocystis, a form of pneumonia, and thrush, an infection of tissues in the oral cavity. This makes introns a potential target for therapeutics against these diseases by using a strategy called targeted trans-splicing in which introns are manipulated to cut out malfunctioning genes.

Introns’ unique capability of cutting and pasting apparently has been conserved since life evolved. "It’s thought that RNA, or a molecule related to RNA, possibly were the first biomolecules, because they are capable of both performing work and carrying around their own genetic code," Golden said.

She and her research team used an intron from a bacteriophage, a molecule that attacks bacteria, to obtain an intron crystal structure trapped in the middle of the cutting and pasting cycle. As introns proceed through their work cycle, they change shape by folding and bending. By crystallizing the complex at various stages, the scientists can determine and study its three-dimensional structure and learn how it is able to carry out its biochemical work.

The Group I intron at its work cycle’s mid-point, which Golden crystallized, is unreactive but reveals many of the interactions between the RNA and the molecules that it activates, she said. "Knowing the structure can help us engineer molecules to behave better," Golden said. "It’s very hard to find targets in cells because cells are organized in ways we still don’t fully understand. This crystal structure shows us where the best targets are for modifying genetic defects."

The crystal structure of this Group I intron also will allow scientists to form models of hundreds of other introns in the same family and provide possibilities for new treatments for a wide variety of diseases, she said. Other scientists now will use the information gleaned from this study in an attempt to develop new drugs, Golden said. Introns were unknown until the late 1970s, and scientists are still investigating their function. Crystallization of the complex is one tool to determine their purpose.

Two intron structures in different stages of the cycle have been crystallized previously, and the targeted trans-splicing technique has been used to repair hemoglobin infected with sickle cell anemia. The new structure provides scientists with tools to expand on ways to harness this molecular machine, Golden said.

The other researchers on this study were Hajeong Kim, graduate student, and Elaine Chase, research associate, both of the Purdue Department of Biochemistry. Golden also is a scientist in the Purdue Cancer Center, a National Cancer Institute designated research facility.

Grants from NASA, the Pew Scholars Program in Biomedical Sciences and the Purdue Cancer Center provided funding for this research.

Barbara Golden | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>