Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New RNA polymerase discovered in plants

11.02.2005


Plays roles in flowering, methylation



Biologists at Washington University in St. Louis have discovered an entirely new cellular "machine" in plants that plays a significant role in plant flowering and DNA methylation, a key chemical process essential for an organism’s development. A team headed by Craig Pikaard, Ph, D., Washington University professor of biology in Arts & Sciences, has discovered a fourth kind of RNA polymerase found only in plants and speculated to have been a plant feature for more than 200 million years.

RNA polymerase is an enzyme, or protein machine, essential for carrying out functions of cells and for expression of biological traits. It does its job by copying a template of DNA genetic information in order to make RNAs that encode proteins or that function directly in the cell.


Biologists have studied three kinds of RNA polymerase for decades in organisms ranging from brewer’s yeast to humans. In all eukaryotes, the RNA polymerases Pol I, II, and III perform the same distinct , though separate, functions in different species.

But then along came Pol IV. Pikaard first noticed the evidence for a fourth polymerase when analyzing gene sequences after Arabidopsis thaliana , the "laboratory rat" of the plant world, was sequenced in 2001. It originally looked to him like an alternative form of either Polymerase I (Pol I), which makes the largest of the ribosomal RNAs, Pol II which makes RNAs for protein-coding genes, or Pol III, a specialist in making the shortest of the ribosomal RNAs and tRNAs.

The big ’subunit’

He and his colleagues looked specifically at two polypeptides that would be the key subunits if the fourth polymerase were functional, namely the largest and second largest subunits, what Pikaard refers to as the catalytic, or "business end" of any known polymerase.

"So, we took a reverse-genetics approach" said Pikaard. " We thought: ’What happens if we knock these genes out?’ So, we knocked out the genes responsible for these subunits and there were no huge consequences. The plants survived, but there were slight delays in flowering and some strange floral defects. The plants were having trouble with organ identity – stamens tried to turn into petals, for instance. Our first hypothesis was that the fourth polymerase was involved with what are known as micro RNAs, which are known to regulate flower development, but that proved wrong."

In a series of genetic and biochemical tests , Pikaard and his collaborators discovered that Pol IV does not share in the duties of Pol I, II or III. But when the Pol IV subunits are knocked out, the most tightly packed DNA in the nucleus becomes less condensed, small RNAs called siRNAs corresponding to highly repeated 5S rRNA genes and retrotransposons (jumping genes) are completely eliminated and DNA methylation at 5S genes and retrotransposons is lost.

Methylation is a vital process involving a chemical modification in cytosine, one of the four chemical subunits of DNA. Without proper DNA methylation, higher organisms from plants to humans have a host of developmental problems, from dwarfing in plants to tumor development in humans to certain death in mice.

Pikaard thinks that Pol IV helps make siRNAs that then direct DNA methylation to sequences matching the siRNAs.

The results were published in Cell online, Feb. 10, 2005 and will appear in the March, 2005 print version of the journal. "Pol IV is somehow involved in maintaining the integrity of the Arabidopsis genome, principally in keeping the silent DNA silent," Pikaard said. "Plants can get by without Pol IV, whereas they can’t do without the other three. We don’t see anything obviously like Pol IV in any other genome, but it’s possible it might have been overlooked."

While Pikaard and his collaborators have indirect evidence that Pol IV is a distinct RNA polymerase, they still have many aspects of Pol IV to unravel. "We know what happens when its gone, but not how it behaves, at this point," he said. "We don’t know its template, or what kind of RNA – long or short – it makes. Presumably, because it is inherently different from the other RNA polymerases, the rules of activity are different for Pol IV."

Pikaard said the Pol IV has a perfect match in rice, the only other plant genome to be sequenced, despite rice being a monocotyledon and Arabidopsis a dicotyledon. "These two plants diverged 200 million years ago, and there is some speculation that this form of polymerase might extend twice as far back in evolution,’ Pikaard said.

Pikaard said that it is strange that so far this kind of polymerase has been found only in plants. "Why would plants only have these?" he questioned. "It is a bit of a mystery how other organisms that use small RNAs and that also do methylation get by without a Pol IV. It might be possible that they have something equivalent, and maybe we haven’t looked hard enough. "

Tony Fitzpatrick | EurekAlert!
Further information:
http://www.wustl.edu

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>