Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mitochondrigal DNA mutations play significant role in prostate cancer

14.01.2005


Mutations in mitochondrial DNA (mtDNA) play an important role in the development of prostate cancer, according to research by scientists at Emory University School of Medicine and the University of California, Irvine. The findings are published online this week in the Proceedings of the National Academy of Sciences (PNAS). Mitochondrial DNA, which is separate from nuclear DNA, is found in the hundreds of mitochondria located in the cytoplasm outside of each cell’s nucleus. The mitochondria often are called the "powerhouse" of the cell because they produce about 90 percent of the body’s energy.



John A. Petros, MD, associate professor of urology and pathology at Emory University School of Medicine and the Winship Cancer Institute, and Douglas C. Wallace, PhD, director of the Center for Molecular and Mitochondrial Medicine and Genetics at the University of California, Irvine, sequenced segments of mtDNA from prostate cancer patients and found a variety of mutations, including various mutations in the mtDNA cytochrome oxidase subunit (COI) gene.

They then sequenced the COI gene in 260 prostate cancer tissue samples or blood cells from patients with confirmed cancer who had undergone radical prostatectomies between 1995 and 2002, and 54 tissue samples from patients who had prostate biopsies but were found to be cancer free. Twelve percent of all the prostate cancer samples had mutations in the COI gene, while less than 2 percent of the samples from patients found to be cancer free harbored mutations in this gene. In a control sample of 1,019 individuals from the general population, 7.8 percent had mutations in the COI gene. The researchers found both germ-line (inherited) and somatic (acquired) mutations in the prostate cancer samples.


Because COI mutations are known to be more common in individuals of African descent, the scientists also analyzed a group of patients and controls of European ancestry. In this group they found the COI mutations in 11 percent of the prostate cancer specimens, in 0 percent of the no-cancer group and in 6.5 percent in a general population sample of 898 Europeans.

To determine whether mtDNA mutations are causally related to prostate cancer, the researchers introduced into a prostate cancer cell line mtDNAs harboring a known disease-causing mtDNA mutation and, as a control, the same mtDNA but without the disease mutation. They then injected these modified prostate cancer cells into mice to assess their tumor-forming ability. The prostate cancer cells with the mutant mtDNAs generated tumors that were on average seven times larger than the prostate cancer cells with normal mitochondria. Hence, the deleterious mtDNA mutation greatly enhanced prostate cancer growth.

Since mitochondria make oxygen radicals as a by-product of making energy, and oxygen radicals can stimulate cell growth, the researchers then tested the tumors for oxygen radical production. The tumors with the mutant mtDNAs generated significantly more oxygen radicals than those with normal ntDNAs, suggesting that this may be an important contributory factor in the mitochondrial enhancement of prostate cancer tumor growth. Because the study found that COI mutations were common in the general population (7.8 percent), but very infrequent (<2 percent) in men without prostate cancer, the investigators noted that men harboring these mutations are at increased risk for developing prostate cancer.

"We believe this study provides convincing evidence that mitochondrial mutations play an important role in prostate cancer," said Dr. Petros. "This is the first evidence that individuals who inherit a mutation of the mitochondrial DNA are at an increased risk of developing prostate cancer later in life. Interestingly, mitochondrial DNA is inherited from your mother, so this may explain those familial cases that are not passed from father to son, but rather through the unaffected mother to her sons."

The research was funded by the Emory Urology Trust for Urologic Research, the U.S. Department of Defense, the National Institutes of Health and an Ellison Medical Foundation Senior Investigator Grant.

Holly Korschun | EurekAlert!
Further information:
http://www.emory.edu

More articles from Life Sciences:

nachricht More genes are active in high-performance maize
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht How plants see light
19.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>