Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mitochondrigal DNA mutations play significant role in prostate cancer

14.01.2005


Mutations in mitochondrial DNA (mtDNA) play an important role in the development of prostate cancer, according to research by scientists at Emory University School of Medicine and the University of California, Irvine. The findings are published online this week in the Proceedings of the National Academy of Sciences (PNAS). Mitochondrial DNA, which is separate from nuclear DNA, is found in the hundreds of mitochondria located in the cytoplasm outside of each cell’s nucleus. The mitochondria often are called the "powerhouse" of the cell because they produce about 90 percent of the body’s energy.



John A. Petros, MD, associate professor of urology and pathology at Emory University School of Medicine and the Winship Cancer Institute, and Douglas C. Wallace, PhD, director of the Center for Molecular and Mitochondrial Medicine and Genetics at the University of California, Irvine, sequenced segments of mtDNA from prostate cancer patients and found a variety of mutations, including various mutations in the mtDNA cytochrome oxidase subunit (COI) gene.

They then sequenced the COI gene in 260 prostate cancer tissue samples or blood cells from patients with confirmed cancer who had undergone radical prostatectomies between 1995 and 2002, and 54 tissue samples from patients who had prostate biopsies but were found to be cancer free. Twelve percent of all the prostate cancer samples had mutations in the COI gene, while less than 2 percent of the samples from patients found to be cancer free harbored mutations in this gene. In a control sample of 1,019 individuals from the general population, 7.8 percent had mutations in the COI gene. The researchers found both germ-line (inherited) and somatic (acquired) mutations in the prostate cancer samples.


Because COI mutations are known to be more common in individuals of African descent, the scientists also analyzed a group of patients and controls of European ancestry. In this group they found the COI mutations in 11 percent of the prostate cancer specimens, in 0 percent of the no-cancer group and in 6.5 percent in a general population sample of 898 Europeans.

To determine whether mtDNA mutations are causally related to prostate cancer, the researchers introduced into a prostate cancer cell line mtDNAs harboring a known disease-causing mtDNA mutation and, as a control, the same mtDNA but without the disease mutation. They then injected these modified prostate cancer cells into mice to assess their tumor-forming ability. The prostate cancer cells with the mutant mtDNAs generated tumors that were on average seven times larger than the prostate cancer cells with normal mitochondria. Hence, the deleterious mtDNA mutation greatly enhanced prostate cancer growth.

Since mitochondria make oxygen radicals as a by-product of making energy, and oxygen radicals can stimulate cell growth, the researchers then tested the tumors for oxygen radical production. The tumors with the mutant mtDNAs generated significantly more oxygen radicals than those with normal ntDNAs, suggesting that this may be an important contributory factor in the mitochondrial enhancement of prostate cancer tumor growth. Because the study found that COI mutations were common in the general population (7.8 percent), but very infrequent (<2 percent) in men without prostate cancer, the investigators noted that men harboring these mutations are at increased risk for developing prostate cancer.

"We believe this study provides convincing evidence that mitochondrial mutations play an important role in prostate cancer," said Dr. Petros. "This is the first evidence that individuals who inherit a mutation of the mitochondrial DNA are at an increased risk of developing prostate cancer later in life. Interestingly, mitochondrial DNA is inherited from your mother, so this may explain those familial cases that are not passed from father to son, but rather through the unaffected mother to her sons."

The research was funded by the Emory Urology Trust for Urologic Research, the U.S. Department of Defense, the National Institutes of Health and an Ellison Medical Foundation Senior Investigator Grant.

Holly Korschun | EurekAlert!
Further information:
http://www.emory.edu

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>