Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Surprising study reveals how cancer-causing protein activates

14.01.2005


Researchers at Brown Medical School and Rhode Island Hospital have shed new light on the activation of a protein key to the development of cancers, particularly breast and prostate cancer, the most commonly diagnosed cancers in the United States.



The team of cell biologists has discovered a new chemical modification that activates STAT3. This so-called signaling protein is important for embryonic growth and development, helping cells grow, duplicate and migrate. In adulthood, STAT3 presumably falls dormant, but its unexpected and continuous activation causes breast and prostate cells to develop and move through the body.

Eugene Chin, M.D., a Rhode Island Hospital researcher and assistant professor (research) of surgery at Brown Medical School, said experts suspect that environmental factors, such as a diet rich in animal fat and hormones, may activate STAT3.


How the protein is turned on inside cells has been the subject of fiercely competitive research during the last decade. One known trigger is phosphorylation, which modifies some of the tyro-sine and serine amino acids that make up the STAT3 protein. Chin and his team found a second trigger: acetylation, another chemical process that modifies amino acids, such as lysine. Chin said this finding might explain why drugs that only block STAT3 phosphorylation cannot completely stop cancer cells from growing and invading other parts of the body.

"Both tyrosine phosphorylation and lysine acetylation modifications are important events for STAT3 to stimulate cancer cell growth and metastasis," Chin said. "That’s why the finding is so exciting. Now that we know more about STAT3 activation, we can create better drugs."

Their findings are published in the current issue of Science.

Paul Yuan, a post-doctoral fellow in Chin’s Rhode Island Hospital lab and the lead author of the paper, painstakingly mutated 47 lysine amino acids and tested each one in cultured cells to see if it activated STAT3. Using this method, Yuan was able to isolate the culprit: Lys685, one of as many as 780 amino acids that are strung together to make the protein.

Yuan corroborated the finding by testing both a normal and mutated version of STAT3 in a mass spectrometer. The machine smashes the protein into amino acids then sequences these building blocks. The work took nearly two years to complete.

Chin said the research provides an important target for drugs in treating breast and prostate cancers that are common in the United States. According to the American Cancer Society, an estimated 217,440 Americans were diagnosed with breast cancer and 230,110 were diagnosed with prostate cancer in 2004. "Finding a drug to block both tyrosine phosphorylation and lysine acetylation of STAT3 protein should be a more effective cancer treatment," Chin said.

The research team also included Ying-jie Guan, a post-doctoral fellow in the lab, and Devasis Chatterjee, an assistant professor (research) of Medicine at Brown Medical School.

Wendy Lawton | EurekAlert!
Further information:
http://www.brown.edu

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>