Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Anti-seizure drugs slow aging in worms

14.01.2005


Nervous system may regulate aging processes



A class of anti-seizure medications slows the rate of aging in roundworms, according to researchers at Washington University School of Medicine in St. Louis. When exposed to drugs used to treat epilepsy in humans, worms lived longer and retained youthful functions longer than normal. Because the drugs affect nerve signals, the researchers’ observations suggest that the nervous system influences aging processes. The findings are reported in the January 14 issue of the journal Science.

The anti-aging effect was revealed in a random screening of 19 drugs approved for treating a variety of disorders in humans. "We didn’t start with a hypothesis about what causes aging," says senior author Kerry Kornfeld, M.D., Ph.D., associate professor of molecular biology and pharmacology. "We wanted to look in an unbiased way at available compounds to see if any of them happened to have anti-aging activity."


The researchers grew the roundworm C. elegans in the presence of the 19 drugs and found that an anticonvulsant, ethosuximide, extended the worms’ lives from an average of 17 days to an average of 20 days. Further tests on anticonvulsants revealed that they also increased life span, with the drug trimethadione having the largest effect and extending the worms’ lives by 47 percent.

The group then sought to uncover the underlying mechanism for the effect of the anticonvulsants. It was apparent that the drugs did not mimic the anti-aging effects of caloric restriction, because the worms had abundant food and looked well-fed. The researchers also demonstrated that anticonvulsants did not extend life by protecting the worms from pathogenic bacteria in their environment.

Ethosuximide and trimethadione did, however, significantly delay age-related declines in neuro-muscular activity. Treated worms continued to display the youthful traits of fast body movement and fast pumping of mouthparts during the latter phase of their extended lives. Further tests showed that the anticonvulsants stimulated transmission of signals in nerves that control body movement.

Scientists previously had found genetic mutations in C. elegans that affect both the nervous system and life span. The researchers used these mutant worms to further pin down the mechanism by which the anticonvulsants increased longevity.

The worms’ mutated genes affect the function of sensory neurons that regulate the release of an insulin-like hormone. "Sensory inputs from the outside regulate the level of insulin signaling inside the body, which then in turn regulates longevity in the worms," Kornfeld says.

Testing the anticonvulsants on longer-lived mutant worms, the researchers found the drugs further extended their lives, although not to the same degree they extended the lives of worms with no mutations. That indicates the anticonvulsants may affect aging partly through their influence on the neural system involved in the insulin signaling pathway and partly through an independent mechanism, according to Kornfeld.

"Our experiments show there is an important connection between neural function and longevity," Kornfeld says. "We’re continuing this line of research to identify the precise functions of the nervous system that cause the worms to live longer."

Because the researchers found that anticonvulsants affect the nervous system of C. elegans, they also plan to use the worms as model organisms to investigate how the drugs inhibit seizures in epileptic patients, a mechanism that currently is not well understood. Such research could lead to more effective treatments for epilepsy.

Gwen Ericson | EurekAlert!
Further information:
http://www.wustl.edu

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>