Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Anti-seizure drugs slow aging in worms

14.01.2005


Nervous system may regulate aging processes



A class of anti-seizure medications slows the rate of aging in roundworms, according to researchers at Washington University School of Medicine in St. Louis. When exposed to drugs used to treat epilepsy in humans, worms lived longer and retained youthful functions longer than normal. Because the drugs affect nerve signals, the researchers’ observations suggest that the nervous system influences aging processes. The findings are reported in the January 14 issue of the journal Science.

The anti-aging effect was revealed in a random screening of 19 drugs approved for treating a variety of disorders in humans. "We didn’t start with a hypothesis about what causes aging," says senior author Kerry Kornfeld, M.D., Ph.D., associate professor of molecular biology and pharmacology. "We wanted to look in an unbiased way at available compounds to see if any of them happened to have anti-aging activity."


The researchers grew the roundworm C. elegans in the presence of the 19 drugs and found that an anticonvulsant, ethosuximide, extended the worms’ lives from an average of 17 days to an average of 20 days. Further tests on anticonvulsants revealed that they also increased life span, with the drug trimethadione having the largest effect and extending the worms’ lives by 47 percent.

The group then sought to uncover the underlying mechanism for the effect of the anticonvulsants. It was apparent that the drugs did not mimic the anti-aging effects of caloric restriction, because the worms had abundant food and looked well-fed. The researchers also demonstrated that anticonvulsants did not extend life by protecting the worms from pathogenic bacteria in their environment.

Ethosuximide and trimethadione did, however, significantly delay age-related declines in neuro-muscular activity. Treated worms continued to display the youthful traits of fast body movement and fast pumping of mouthparts during the latter phase of their extended lives. Further tests showed that the anticonvulsants stimulated transmission of signals in nerves that control body movement.

Scientists previously had found genetic mutations in C. elegans that affect both the nervous system and life span. The researchers used these mutant worms to further pin down the mechanism by which the anticonvulsants increased longevity.

The worms’ mutated genes affect the function of sensory neurons that regulate the release of an insulin-like hormone. "Sensory inputs from the outside regulate the level of insulin signaling inside the body, which then in turn regulates longevity in the worms," Kornfeld says.

Testing the anticonvulsants on longer-lived mutant worms, the researchers found the drugs further extended their lives, although not to the same degree they extended the lives of worms with no mutations. That indicates the anticonvulsants may affect aging partly through their influence on the neural system involved in the insulin signaling pathway and partly through an independent mechanism, according to Kornfeld.

"Our experiments show there is an important connection between neural function and longevity," Kornfeld says. "We’re continuing this line of research to identify the precise functions of the nervous system that cause the worms to live longer."

Because the researchers found that anticonvulsants affect the nervous system of C. elegans, they also plan to use the worms as model organisms to investigate how the drugs inhibit seizures in epileptic patients, a mechanism that currently is not well understood. Such research could lead to more effective treatments for epilepsy.

Gwen Ericson | EurekAlert!
Further information:
http://www.wustl.edu

More articles from Life Sciences:

nachricht Fingerprint' technique spots frog populations at risk from pollution
27.03.2017 | Lancaster University

nachricht Parallel computation provides deeper insight into brain function
27.03.2017 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>