Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MGH researchers find way of regenerating cells key to hearing

14.01.2005


Finding someday may help treat hearing loss, neurodegenerative disorders



Selectively turning off a protein that controls the growth and division of cells could allow regeneration of the inner ear’s hair cells, which convert sound vibrations into nerve impulses. The discovery by a research team based at Massachusetts General Hospital (MGH) runs counter to current beliefs about these cells and could eventually lead to ways of preventing or treating hearing loss. The report will appear in the journal Science and is receiving early online release on the Science Express website at http://www.sciencexpress.org.

"These findings give us a potential stragegy for hair cell regeneration, which could have enormous implications for the treatment of hearing and balance disorders," says Zheng-Yi Chen, DPhil, of the MGH Neurology Service, the study’s senior author. "It also shows that cells that have been considered incapable of regeneration – like most nerve cells – can reproduce under the right conditions, which may have applications to neurodegenerative diseases."


Named for the hair-like projections on their surfaces, hair cells form a ribbon of vibration sensors along the length of the cochlea, the organ of the inner ear that senses sound. Receiving sonic vibrations through the eardrum and bones of the middle ear, hair cells convert them to electrical signals that are carried to the brain by the auditory nerve. Among the earliest structures to form in embryonic development, hair cells are very sensitive to damage from excessive noise, infections or toxins including some medications. Once damaged, hair cells do not naturally regenerate in mammals, and their death accounts for most types of acquired hearing loss.

Cells grow and divide through a process called the cell cycle, and many proteins have been indentified as controllers of the different cell cycle phases. Chen’s group started by carrying out a comprehensive assessment of which genes are active in the developing mouse ear and when the are expressed. The activity of certain genes suggested that the retinoblastoma (Rb) protein, known to suppress the cell cycle, could be important for halting the cell cycle in hair cells. To follow up that observation, the researchers used a genetically modified mouse strain in which Rb was no longer made in the inner ear.

They found that hair cells in the ears of these mice were significantly more numerous than in normal mice at the same stage of development. These additional cells retained the distinctive appearance of hair cells, performed functions characteristic of normal hair cells and appeared fully able to form proper connections with nerve cells. In addition, hair cells in the modified mice made proteins that indicated they were still actively regenerating, while cells in normal animals did not.

The researchers note that these findings will form the basis for the future work aimed at recovery of hearing through hair cell regeneration. In particular, they have to learn to control the presence of Rb for short times, allowing some regeneration but not too much. The genetic basis of hearing and deafness is almost identical in mice and in humans, so a successful mouse model may ultimately translate into therapy in human patients.

"It’s taken over 10 years of work to show that hair cells can regenerate in tissues, and I hope it won’t take another decade to achieve functional regeneration in a living animal," says Chen. "But my hope and belief is that, if we can do this in mice, we’ll be able to achieve it in people." Chen is an assistant professor of Neurology at Harvard Medical School (HMS).

Sue McGreevey | EurekAlert!
Further information:
http://www.mgh.harvard.edu
http://www.sciencexpress.org

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>