Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ants’ ’genetic engineering’ leads to species interdependency

29.12.2004


Findings reported this week reveal how an evolutionary innovation involving the sharing of genes between two ant species has given rise to a deep-seated dependency between them for the survival of both species populations. The new work illustrates how genetic exchange through interbreeding between two species can give rise to a system of interdependence at a high level of biological organization--in this case, the production of worker ants for both species.



Millions of years before the first modern humans evolved, ants were practicing many of the social innovations we consider to be our own: division of labor, agriculture, and even slavery. Indeed, these traits have been taken to their extreme in many ant species, such as the case of slavemaker ants, which have become so specialized for raiding food from the colonies of other ants that they can no longer feed themselves or raise their younger siblings. Recent work on ants suggests that we may need to add genetic engineering to the list of innovations ants have evolved to employ. In two species of harvester ants, populations have been discovered in which queens mate with males of another species to produce genetically novel hybrid workers. In a new study, Dr. Sara Helms Cahan and colleagues demonstrate that both of the species involved have effectively given up the ability to produce pure-species workers in favor of the hybrids, thereby becoming completely dependent on one another for survival.

Female ants are generally found in two forms: reproductive queens and sterile workers. The role, or caste, of an individual is determined for life at a certain stage in her development. In virtually all ant species, it is the environment in which a female is raised, rather than a genetic predisposition, that determines which caste she will adopt. However, in two harvester ant populations in southern New Mexico, queens and workers from the same colonies are genetically very different; in both species at the site, only the queens are genetically derived from a pure species-specific lineage, whereas all the workers are hybrids that possess a combination of genes from the two species in a single individual. It is not currently known whether the ants benefit from having hybrids do the work, but, as is evident from the researchers’ own attempts at selective breeding and genetic engineering, combining genomes is an easy way to produce novel characteristics that may be highly advantageous for growth, environmental tolerance, or disease resistance. Regardless of the specific advantages, however, it is clear that these ants have committed themselves to the hybrid workforce strategy. When the researchers prevented queens from mating with males of the other species, very few succeeded in making any workers at all, a handicap that would lead to certain population failure in the field. The new findings suggest that specialization involving reliance on interspecific hybrid workers has left these species unable to survive independently of one another.


Sara Helms Cahan, Glennis E. Julian, Steven W. Rissing, Tanja Schwander, Joel D. Parker, and Laurent Keller: "Loss of Phenotypic Plasticity Generates Genotype-Caste Association in Harvester Ants"

Heidi Hardman | EurekAlert!
Further information:
http://www.cell.com

More articles from Life Sciences:

nachricht Unique genome architectures after fertilisation in single-cell embryos
30.03.2017 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>