Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Ants’ ’genetic engineering’ leads to species interdependency


Findings reported this week reveal how an evolutionary innovation involving the sharing of genes between two ant species has given rise to a deep-seated dependency between them for the survival of both species populations. The new work illustrates how genetic exchange through interbreeding between two species can give rise to a system of interdependence at a high level of biological organization--in this case, the production of worker ants for both species.

Millions of years before the first modern humans evolved, ants were practicing many of the social innovations we consider to be our own: division of labor, agriculture, and even slavery. Indeed, these traits have been taken to their extreme in many ant species, such as the case of slavemaker ants, which have become so specialized for raiding food from the colonies of other ants that they can no longer feed themselves or raise their younger siblings. Recent work on ants suggests that we may need to add genetic engineering to the list of innovations ants have evolved to employ. In two species of harvester ants, populations have been discovered in which queens mate with males of another species to produce genetically novel hybrid workers. In a new study, Dr. Sara Helms Cahan and colleagues demonstrate that both of the species involved have effectively given up the ability to produce pure-species workers in favor of the hybrids, thereby becoming completely dependent on one another for survival.

Female ants are generally found in two forms: reproductive queens and sterile workers. The role, or caste, of an individual is determined for life at a certain stage in her development. In virtually all ant species, it is the environment in which a female is raised, rather than a genetic predisposition, that determines which caste she will adopt. However, in two harvester ant populations in southern New Mexico, queens and workers from the same colonies are genetically very different; in both species at the site, only the queens are genetically derived from a pure species-specific lineage, whereas all the workers are hybrids that possess a combination of genes from the two species in a single individual. It is not currently known whether the ants benefit from having hybrids do the work, but, as is evident from the researchers’ own attempts at selective breeding and genetic engineering, combining genomes is an easy way to produce novel characteristics that may be highly advantageous for growth, environmental tolerance, or disease resistance. Regardless of the specific advantages, however, it is clear that these ants have committed themselves to the hybrid workforce strategy. When the researchers prevented queens from mating with males of the other species, very few succeeded in making any workers at all, a handicap that would lead to certain population failure in the field. The new findings suggest that specialization involving reliance on interspecific hybrid workers has left these species unable to survive independently of one another.

Sara Helms Cahan, Glennis E. Julian, Steven W. Rissing, Tanja Schwander, Joel D. Parker, and Laurent Keller: "Loss of Phenotypic Plasticity Generates Genotype-Caste Association in Harvester Ants"

Heidi Hardman | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Here comes the long-sought-after iron-munching microbe
25.10.2016 | Max-Planck-Institut für marine Mikrobiologie

nachricht Novel method to benchmark and improve the performance of protein measumeasurement techniques
25.10.2016 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

First-time reconstruction of infectious bat influenza viruses

25.10.2016 | Life Sciences

Novel method to benchmark and improve the performance of protein measumeasurement techniques

25.10.2016 | Life Sciences

Amazon rain helps make more rain

25.10.2016 | Life Sciences

More VideoLinks >>>