Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ants’ ’genetic engineering’ leads to species interdependency

29.12.2004


Findings reported this week reveal how an evolutionary innovation involving the sharing of genes between two ant species has given rise to a deep-seated dependency between them for the survival of both species populations. The new work illustrates how genetic exchange through interbreeding between two species can give rise to a system of interdependence at a high level of biological organization--in this case, the production of worker ants for both species.



Millions of years before the first modern humans evolved, ants were practicing many of the social innovations we consider to be our own: division of labor, agriculture, and even slavery. Indeed, these traits have been taken to their extreme in many ant species, such as the case of slavemaker ants, which have become so specialized for raiding food from the colonies of other ants that they can no longer feed themselves or raise their younger siblings. Recent work on ants suggests that we may need to add genetic engineering to the list of innovations ants have evolved to employ. In two species of harvester ants, populations have been discovered in which queens mate with males of another species to produce genetically novel hybrid workers. In a new study, Dr. Sara Helms Cahan and colleagues demonstrate that both of the species involved have effectively given up the ability to produce pure-species workers in favor of the hybrids, thereby becoming completely dependent on one another for survival.

Female ants are generally found in two forms: reproductive queens and sterile workers. The role, or caste, of an individual is determined for life at a certain stage in her development. In virtually all ant species, it is the environment in which a female is raised, rather than a genetic predisposition, that determines which caste she will adopt. However, in two harvester ant populations in southern New Mexico, queens and workers from the same colonies are genetically very different; in both species at the site, only the queens are genetically derived from a pure species-specific lineage, whereas all the workers are hybrids that possess a combination of genes from the two species in a single individual. It is not currently known whether the ants benefit from having hybrids do the work, but, as is evident from the researchers’ own attempts at selective breeding and genetic engineering, combining genomes is an easy way to produce novel characteristics that may be highly advantageous for growth, environmental tolerance, or disease resistance. Regardless of the specific advantages, however, it is clear that these ants have committed themselves to the hybrid workforce strategy. When the researchers prevented queens from mating with males of the other species, very few succeeded in making any workers at all, a handicap that would lead to certain population failure in the field. The new findings suggest that specialization involving reliance on interspecific hybrid workers has left these species unable to survive independently of one another.


Sara Helms Cahan, Glennis E. Julian, Steven W. Rissing, Tanja Schwander, Joel D. Parker, and Laurent Keller: "Loss of Phenotypic Plasticity Generates Genotype-Caste Association in Harvester Ants"

Heidi Hardman | EurekAlert!
Further information:
http://www.cell.com

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>