Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research points to new theory driving evolutionary changes

14.12.2004


Researchers at UT Southwestern Medical Center at Dallas have used canine DNA to identify a genetic mutation mechanism they believe is responsible for rapid evolutionary changes in the physical appearance of many species.



The findings, based on data gathered from hundreds of museum specimens of dogs and from blood samples of volunteered live dogs, offer a new explanation for the sudden, rapid rise of new species found in the fossil record. They also help explain the variability in appearance among individual members of a species, such as the length of the nose in different breeds of domestic dogs.

The findings will appear in an upcoming issue of the Proceedings of the National Academy of Sciences and are available online. "We’re offering an explanation for a lot of different components of evolution, one that goes against the central dogma that currently explains how certain aspects of evolution take place," said Dr. Harold "Skip" Garner, professor of biochemistry and internal medicine at UT Southwestern and one of the authors of the study, which involved only small, non-invasive blood draws from dogs by licensed veterinarians.


The chemical units that make up an organism’s DNA, or genetic code, are abbreviated with the letters A, C, T and G. Strings of these letters spell out the genetic instructions needed to carry out all of life’s functions.

Most scientists agree that over very long periods of time, mutations in the genetic code are responsible for driving evolutionary changes in species. One widely accepted hypothesis is that random, so-called single-point mutations - a change from one letter to another among the billions of letters contained in the code - minutely but inexorably change an organism’s appearance.

UT Southwestern scientists, however, believe the single-point mutation process is much too slow and happens much too infrequently to account for the rapid rise of new species found in the fossil record, or for the rapid evolutionary changes occurring in species such as the domestic dog, whose various breeds have evolved relatively quickly from a not-too-distant common ancestor.

The scientists combined extensive genetic data from different dog breeds and data on the shapes of dog skulls with computer programs developed by study co-author Dr. John "Trey" Fondon, a research fellow in the Eugene McDermott Center for Human Growth and Development and biochemistry at UT Southwestern. The researchers found a correlation between the length and angle of the dogs’ noses and specific regions in their genetic code that are prone to mutate often.

These genetic regions, called tandem repeat sequences, consist of the same series of letters repeated many times over, for example, A-C-T-A-C-T-A-C-T. Mutations happen in these regions when such units - the A-C-T in the above example - are mistakenly added or subtracted by the proteins responsible for "reading" and "copying" the letters in the genetic instructions. Such additions or deletions can result in changes in the proteins made by cells, which then affects how the cells function and, over time, the physical appearance of an animal.

The researchers found that in a dog gene involved in determining muzzle length, the number of times specific tandem repeat units were repeated could be used as a predictor of what the dog looked like - long muzzle or short. In the same genetic region from wild coyotes and wolves, the researchers also found variations in repeat lengths, but these animals do not have nearly the wide range of variation in repeat length that domestic dogs do. Consequently, they also don’t have the range in physical variation in muzzle length.

Mutations in tandem repeat sequences occur much more frequently than single point mutations - up to 100,000 times as often - and are much more likely to result in significant morphological changes, or changes in physical appearance, in an organism, said Dr. Fondon, an evolutionary biologist.

"I was struck by the prevalence of very highly mutable tandem repeats in the coding regions of genes responsible for development," he said. "That’s when it occurred to me that this may be an important mechanism whereby our genomes are able to create lots of useful variations in genes that are important for our development, our shape and structure, and our overall appearance. "Many of the shape difference that we see in evolution are not suddenly adding a wing or a leg. They are distortions, the stretching or squishing of a body part. Mutations in these repeat sequences are responsible for such incremental, quantitative changes."

The researchers say the same processes may play an important role in the subtle variations between people. In addition, in humans and in other animals, tandem repeat sequences are found in genes responsible for neurological development, an area where humans have evolved rapidly.

"We have demonstrated that the tandem repeat sequences found in many genes are probably responsible for rapidly evolving physical traits that affect a species’ ability to survive," Dr. Garner said. "Dogs have been rapidly bred to have many different shapes and traits that are pleasing to humans, enabling them to survive. Humans rapidly evolved big brains, which helped them survive as well."

The next step in the research is to determine whether tandem repeat mutations behave in a similar manner in other animals, such as mice, and whether such genetic information can be used to predict what an animal will look like.

The research was funded by the National Cancer Institute and the Evelyn Hudson Foundation.

Amanda Siegfried | EurekAlert!
Further information:
http://www.utsouthwestern.edu

More articles from Life Sciences:

nachricht Two Group A Streptococcus genes linked to 'flesh-eating' bacterial infections
25.09.2017 | University of Maryland

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>