Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research points to new theory driving evolutionary changes

14.12.2004


Researchers at UT Southwestern Medical Center at Dallas have used canine DNA to identify a genetic mutation mechanism they believe is responsible for rapid evolutionary changes in the physical appearance of many species.



The findings, based on data gathered from hundreds of museum specimens of dogs and from blood samples of volunteered live dogs, offer a new explanation for the sudden, rapid rise of new species found in the fossil record. They also help explain the variability in appearance among individual members of a species, such as the length of the nose in different breeds of domestic dogs.

The findings will appear in an upcoming issue of the Proceedings of the National Academy of Sciences and are available online. "We’re offering an explanation for a lot of different components of evolution, one that goes against the central dogma that currently explains how certain aspects of evolution take place," said Dr. Harold "Skip" Garner, professor of biochemistry and internal medicine at UT Southwestern and one of the authors of the study, which involved only small, non-invasive blood draws from dogs by licensed veterinarians.


The chemical units that make up an organism’s DNA, or genetic code, are abbreviated with the letters A, C, T and G. Strings of these letters spell out the genetic instructions needed to carry out all of life’s functions.

Most scientists agree that over very long periods of time, mutations in the genetic code are responsible for driving evolutionary changes in species. One widely accepted hypothesis is that random, so-called single-point mutations - a change from one letter to another among the billions of letters contained in the code - minutely but inexorably change an organism’s appearance.

UT Southwestern scientists, however, believe the single-point mutation process is much too slow and happens much too infrequently to account for the rapid rise of new species found in the fossil record, or for the rapid evolutionary changes occurring in species such as the domestic dog, whose various breeds have evolved relatively quickly from a not-too-distant common ancestor.

The scientists combined extensive genetic data from different dog breeds and data on the shapes of dog skulls with computer programs developed by study co-author Dr. John "Trey" Fondon, a research fellow in the Eugene McDermott Center for Human Growth and Development and biochemistry at UT Southwestern. The researchers found a correlation between the length and angle of the dogs’ noses and specific regions in their genetic code that are prone to mutate often.

These genetic regions, called tandem repeat sequences, consist of the same series of letters repeated many times over, for example, A-C-T-A-C-T-A-C-T. Mutations happen in these regions when such units - the A-C-T in the above example - are mistakenly added or subtracted by the proteins responsible for "reading" and "copying" the letters in the genetic instructions. Such additions or deletions can result in changes in the proteins made by cells, which then affects how the cells function and, over time, the physical appearance of an animal.

The researchers found that in a dog gene involved in determining muzzle length, the number of times specific tandem repeat units were repeated could be used as a predictor of what the dog looked like - long muzzle or short. In the same genetic region from wild coyotes and wolves, the researchers also found variations in repeat lengths, but these animals do not have nearly the wide range of variation in repeat length that domestic dogs do. Consequently, they also don’t have the range in physical variation in muzzle length.

Mutations in tandem repeat sequences occur much more frequently than single point mutations - up to 100,000 times as often - and are much more likely to result in significant morphological changes, or changes in physical appearance, in an organism, said Dr. Fondon, an evolutionary biologist.

"I was struck by the prevalence of very highly mutable tandem repeats in the coding regions of genes responsible for development," he said. "That’s when it occurred to me that this may be an important mechanism whereby our genomes are able to create lots of useful variations in genes that are important for our development, our shape and structure, and our overall appearance. "Many of the shape difference that we see in evolution are not suddenly adding a wing or a leg. They are distortions, the stretching or squishing of a body part. Mutations in these repeat sequences are responsible for such incremental, quantitative changes."

The researchers say the same processes may play an important role in the subtle variations between people. In addition, in humans and in other animals, tandem repeat sequences are found in genes responsible for neurological development, an area where humans have evolved rapidly.

"We have demonstrated that the tandem repeat sequences found in many genes are probably responsible for rapidly evolving physical traits that affect a species’ ability to survive," Dr. Garner said. "Dogs have been rapidly bred to have many different shapes and traits that are pleasing to humans, enabling them to survive. Humans rapidly evolved big brains, which helped them survive as well."

The next step in the research is to determine whether tandem repeat mutations behave in a similar manner in other animals, such as mice, and whether such genetic information can be used to predict what an animal will look like.

The research was funded by the National Cancer Institute and the Evelyn Hudson Foundation.

Amanda Siegfried | EurekAlert!
Further information:
http://www.utsouthwestern.edu

More articles from Life Sciences:

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

nachricht What happens in the cell nucleus after fertilization
06.12.2016 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Predicting unpredictability: Information theory offers new way to read ice cores

07.12.2016 | Earth Sciences

Sea ice hit record lows in November

07.12.2016 | Earth Sciences

New material could lead to erasable and rewriteable optical chips

07.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>