Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecular Chains Line Up to Form Protopolymer

08.12.2004


First observation of extended chains of molecules that exhibit a strong interaction without forming chemical bonds


Protopolyphenylene is composed of molecules lined up for reaction and held in place by the copper substrate surface and intermolecular interactions. The image of a 270-angstrom (27-nanometer) square area of the surface was recorded with a scanning tunneling microscope at 77 K in ultrahigh vacuum. The ridged ring structure is the protopolymer; the angled lines are one-atom-high steps of the copper substrate.



A new chemical state, designated a "protopolymer," has been observed by Penn State researchers in chains of phenylene molecules on a crystalline copper surface at low temperature. Protopolymers form when monomers, small molecules that link together chemically to form long chains, align and interact without forming chemical bonds. The novel structures were discovered by Paul S. Weiss, professor of chemistry and physics at Penn State and Gregory S. McCarty, a graduate student at time of discovery and now a research assistant professor of engineering science and mechanics. While surface-mediated pairing and other interactions have previously been seen on metal surfaces, this is the first observation of extended chains of molecules that exhibit a strong interaction without forming chemical bonds. This type of alignment could be used to control growth and assembly of molecules and for manipulation of nanostructured materials, which are assembled on an atomic or molecular scale. Nanostructured materials often exhibit very different properties from those made by conventional techniques. A paper describing the research results, titled "Formation and Manipulation of Protopolymer Chains," will be published in the Journal of the American Chemical Society on 15 December 2004.

Weiss points out that in substrate-mediated interactions, those in which the surface participates in the electronic interactions between molecules, the surface itself acts as a catalyst, holding molecules in place and enabling them to align for reaction. "If we use substrate-mediated interactions to direct the arrangement of monomers prior to chemical bonding, we may be able to build atomically precise structures," says Weiss. "The key is to understand how the electronic functions of the molecule-surface interaction drive reactions and how they can be used to enhance chemical selectivity."


The researchers carried out the experiments in a low temperature scanning tunneling microscope (STM) under ultrahigh vacuum by exposing a close-packed copper surface to p-diiodobenzene molecules. On the surface, the molecules dissociate into phenylene (cyclic C6H4) reaction intermediates and two iodine atoms. The positions of these phenylene molecules are observed by STM. Extended structures self-assembled as long chains on the surface. While individual phenylene molecules remain mobile, molecules in the chains did not move under the imaging conditions. They were able to extract molecules from the chains, however, by applying voltage pulses to the STM tip. This suggests that the chains are not covalently bound together, but instead are held by electronic reactions between molecules that are mediated by the surface. These chains extended across atomic steps on the copper surface where the level of the surface drops by one atom, resembling a stair step. This is a region in which electronic perturbations would be expected to disrupt the continuity. "It amazed us that these extended structures could cross step boundaries," Weiss says. "These monomers have not yet formed covalent chemical bonds, which would link them together as a large molecule, but they are aligned and their interaction is much stronger than any previously observed."

Weiss and McCarty were surprised to find that although the protopolymer is ’ready’ to form a molecule, individual units can still be manipulated and even pulled out of the chain. The protopolymer chains were stationary on the copper surface, but short chains on a phenylene-coated copper surface could be moved with the STM tip. The existence of this bonding state could potentially have significant implications for supramolecular design. These intermolecular interactions could be used to place compounds together like a jigsaw puzzle into complex structures based on the choice of assembly units and substrate surfaces--one more step toward the molecular design and engineering of new nanostructured materials.

This research was funded, in part, by the National Science Foundation, the Defense Advanced Research Projects Agency (DARPA), and the Office of Naval Research.

Barbara K. Kennedy | EurekAlert!
Further information:
http://www.psu.edu

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>