Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New weapon in germ warfare: ’Jamming’ bacteria signals stops cholera

08.12.2004


A new treatment for the age-old scourge of cholera and perhaps a whole new type of antibiotic medicine may emerge from chemicals discovered in an Australian seaweed, new research results suggest.



Researchers at the University of New South Wales have found that compounds known as furanones – isolated from the seaweed Delisea pulchra – can prevent the bacteria that cause cholera from switching on their disease-causing mechanisms. It seems likely that furanones can have the same effect on many other bacteria, such as those that cause food poisoning and cystic fibrosis-related infections.

Furanones do not kill such microbes but simply "jam" their ability to send signals to each other. This means as well that their use is far less likely to create the drug-resistance problems that plague current anti-microbial treatments. "This is very exciting as these are the first antimicrobials of their type that have been shown to be effective," says Dr Diane McDougald, a Senior Research Associate at the UNSW Centre for Marine Biofouling and Bio-innovation. Dr McDougald is conducting the research in association with UNSW’s Professor Staffan Kjelleberg and Professor Peter Steinberg. "The fact that furanones prevent bacterial communication means that they may be effective against a wide range of bacteria that have communication systems, such as the bacteria that cause golden Staph infections and tuberculosis," she says.


"These bacteria have become resistant to many antibiotics and are becoming harder and harder to treat. "Because furanones don’t kill the bacteria, there is no selection pressure for them to develop resistance. Indeed, in a million years of evolution, no natural resistance has been developed by bacteria to these furanones in the natural environment."

The team has found that when the bacteria that cause cholera – Vibrio cholerae – are exposed to furanones, they cannot switch on their so-called virulence factors associated with infection and the development of the disease. "The new experiments suggest that furanones may prevent cholera bacteria from escaping the host immune response and secreting toxins to weaken their host," says Dr McDougald.

Many bacteria rely on a signalling system known as quorum sensing to detect when enough of their own kind is present and then change their behaviour and attach themselves to a surface on a host or in the environment. The seaweed, a red algal species found at a UNSW marine research site in Sydney’s Botany Bay, produces the compounds to prevent bacteria from forming biofilms on its leaves.

The discovery – so far only established in laboratory tests -- is now being tested further in trials involving mice and tissue cultures. Publication in a scientific journal is pending.

The number of officially reported cholera cases worldwide varies between 110,000 and 200,000 cases a year, causing an average of about 5,000 deaths, but the World Health Organisation believes the true number is probably significantly higher.

Infections occur as a result of contact with water and food contaminated with Vibrio cholerae, which is widely dispersed around the world in estuaries and coastal waters. "There is an increasing number of antibiotic resistant bacteria and a decreasing number of drugs in the pipeline," Dr McDougald says. "Thus, we need to find new approaches to treat bacterial infections." The furanone compounds are especially exciting as they do not kill the bacteria, but just stop them from expressing disease-causing traits. This means that there is no pressure on the bacteria to develop resistance."

Professor Kjelleberg and Professor Steinberg discovered furanones’ ability to interfere with bacterial signaling systems in the 1990s. Synthetic versions of these compounds have since been made. In 1999 a separate company Biosignal Ltd was established to act as a vehicle for commercialisation of selected "smart molecules", including furanones, identified in the research activities of the UNSW Centre for Marine Biofouling and Bioinnovation.

Dr. Diane McDougald | EurekAlert!
Further information:
http://www.unsw.edu.au

More articles from Life Sciences:

nachricht Warming ponds could accelerate climate change
21.02.2017 | University of Exeter

nachricht An alternative to opioids? Compound from marine snail is potent pain reliever
21.02.2017 | University of Utah

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>