Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New weapon in germ warfare: ’Jamming’ bacteria signals stops cholera

08.12.2004


A new treatment for the age-old scourge of cholera and perhaps a whole new type of antibiotic medicine may emerge from chemicals discovered in an Australian seaweed, new research results suggest.



Researchers at the University of New South Wales have found that compounds known as furanones – isolated from the seaweed Delisea pulchra – can prevent the bacteria that cause cholera from switching on their disease-causing mechanisms. It seems likely that furanones can have the same effect on many other bacteria, such as those that cause food poisoning and cystic fibrosis-related infections.

Furanones do not kill such microbes but simply "jam" their ability to send signals to each other. This means as well that their use is far less likely to create the drug-resistance problems that plague current anti-microbial treatments. "This is very exciting as these are the first antimicrobials of their type that have been shown to be effective," says Dr Diane McDougald, a Senior Research Associate at the UNSW Centre for Marine Biofouling and Bio-innovation. Dr McDougald is conducting the research in association with UNSW’s Professor Staffan Kjelleberg and Professor Peter Steinberg. "The fact that furanones prevent bacterial communication means that they may be effective against a wide range of bacteria that have communication systems, such as the bacteria that cause golden Staph infections and tuberculosis," she says.


"These bacteria have become resistant to many antibiotics and are becoming harder and harder to treat. "Because furanones don’t kill the bacteria, there is no selection pressure for them to develop resistance. Indeed, in a million years of evolution, no natural resistance has been developed by bacteria to these furanones in the natural environment."

The team has found that when the bacteria that cause cholera – Vibrio cholerae – are exposed to furanones, they cannot switch on their so-called virulence factors associated with infection and the development of the disease. "The new experiments suggest that furanones may prevent cholera bacteria from escaping the host immune response and secreting toxins to weaken their host," says Dr McDougald.

Many bacteria rely on a signalling system known as quorum sensing to detect when enough of their own kind is present and then change their behaviour and attach themselves to a surface on a host or in the environment. The seaweed, a red algal species found at a UNSW marine research site in Sydney’s Botany Bay, produces the compounds to prevent bacteria from forming biofilms on its leaves.

The discovery – so far only established in laboratory tests -- is now being tested further in trials involving mice and tissue cultures. Publication in a scientific journal is pending.

The number of officially reported cholera cases worldwide varies between 110,000 and 200,000 cases a year, causing an average of about 5,000 deaths, but the World Health Organisation believes the true number is probably significantly higher.

Infections occur as a result of contact with water and food contaminated with Vibrio cholerae, which is widely dispersed around the world in estuaries and coastal waters. "There is an increasing number of antibiotic resistant bacteria and a decreasing number of drugs in the pipeline," Dr McDougald says. "Thus, we need to find new approaches to treat bacterial infections." The furanone compounds are especially exciting as they do not kill the bacteria, but just stop them from expressing disease-causing traits. This means that there is no pressure on the bacteria to develop resistance."

Professor Kjelleberg and Professor Steinberg discovered furanones’ ability to interfere with bacterial signaling systems in the 1990s. Synthetic versions of these compounds have since been made. In 1999 a separate company Biosignal Ltd was established to act as a vehicle for commercialisation of selected "smart molecules", including furanones, identified in the research activities of the UNSW Centre for Marine Biofouling and Bioinnovation.

Dr. Diane McDougald | EurekAlert!
Further information:
http://www.unsw.edu.au

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>