Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Single nucleotide polymorphisms and forensic genetics, maybe not such a perfect combination


Forensic genetics is the branch of genetics that, through DNA analysis and comparison, deals with the resolution of legal problems such as paternity tests. Recently, it has been proposed that single nucleotide polymorphisms (SNPs) could be used as a new genetic marker in the field eventually even replacing the methods/markers now employed. But in an article just published online in Forensic Science International, a team of scientists challenges the effectiveness of SNPs in kinship studies predicting an increase in inconclusive cases when these markers are used.

In forensic genetics, DNA samples are analysed through the comparison of particular DNA sequences unique to each individual. In fact, although more than 99% of the genome is the same across the human population, variations in DNA sequence called polymorphisms can be used to both differentiate and correlate individuals.

Short Tandem Repeats (STRs) are the genetic markers most commonly used in this moment by forensic scientists. STRs consist of repetitive segments of DNA two to five nucleotides (DNA building blocks) length found throughout the genome with different individuals having different STRs combinations.

Recently however, another type of genetic marker called SPNs (single nucleotide polymorphisms), which consists in DNA sequence variations that result from alterations in a single nucleotide in the genome sequence, has been considered to replace STRs in forensic investigations. SNPs seem to have several advantages over STRs as not only they are a more stable genetic marker and so are less likely to be lost across generations which is crucial in paternity cases, but they are also cheaper, easier and faster to examine and need much smaller DNA samples.

But now António Amorim and Luísa Pereira at IPATIMUP (Institute of Pathology and Molecular Immunology, Porto University, Portugal) and the Faculty of Sciences of the same university show that SNPs analysis can also have some problems. In fact, the two scientists used statistic simulations to compare STRs and SNPs effectiveness in kinship studies and reached the unexpected conclusion that the possibility of inconclusive results is much higher when using SNPs. Amorim and Pereira’s work question the validity of SNP polymorphisms sole use in routine paternity investigations and raise the need for a proper assessment of this technique before any decisions are make.

Piece researched and written by: Catarina Amorim (

Catarina Amorim | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht ‘Farming’ bacteria to boost growth in the oceans
24.10.2016 | Max-Planck-Institut für marine Mikrobiologie

nachricht Calcium Induces Chronic Lung Infections
24.10.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>