Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene for Joubert syndrom with excessive brain folds discovered by UCSD researchers and Harvard team

21.10.2004



Researchers at the University of California, San Diego (UCSD) School of Medicine have discovered the gene for a form of Joubert Syndrome, a condition present before birth that affects an area of the brain controlling balance and coordination in about 1 in 10,000 individuals. Their study, published in the November 2004 issue of the American Journal of Human Genetics*, pointed to mutations in a gene called AHI1 that lead to the production of a protein the scientists named Jouberin.

Separate research by a team from Harvard Medical School concurrently identified the same gene in a paper published in the November 2004 issue of the journal Nature Genetics.** Both the UCSD and Harvard studies were published online prior to the print publications in November.

The AHI1 gene mutation is responsible for a form of Joubert Syndrome manifested by absence of part of the cerebellum, the part of the brain controlling balance, and by excessive folding in the cerebral cortex, the part of the brain controlling consciousness and thought. The results from both UCSD and Harvard involved a gene-by-gene search of chromosome 6 DNA from three families studied by UCSD and three separate families studied by Harvard. Researchers believe the disorder linked to chromosome 6 is the most common of the three known forms of Joubert Syndrome.



“This is a tremendously exciting finding because it is the first genetic defect clearly associated with this condition. Although Joubert Syndrome is relatively rare, we think that the genes causing this condition are going to underlie more common childhood brain and behavioral abnormalities, such as autism, mental retardation, and poor coordination” said the UCSD paper’s senior author, Joseph Gleeson, M.D., assistant professor of neurosciences at UCSD and Children’s Hospital San Diego.

This identification caps a five-year hunt for the first gene for Joubert syndrome. The Gleeson team initially recruited families in the U.S., but after initial attempts, shifted focus to families in the Middle East, where inbreeding (i.e. first-cousin marriages) are common and families commonly have 8-12 children. “These populations allowed us to better exploit the work of the human genome project to arrive at the chromosomal hot-spot,” he said.

Noting that many children with Joubert Syndrome also have autism, Gleeson explained that “if we can understand how the AHI1 gene works and how its dysfunction leads to disordered brain development, it can tell us something about the biology underlying a common disorder like autism.”

Also important are the implications for genetic testing, Gleeson added. “We receive frequent calls from parents who already have a child with Joubert Syndrome, and who want more children but are naturally concerned about having other children with major handicaps,” Gleeson said. “We also hear from obstetricians asking about genetic testing when they find a child on routine prenatal ultrasound whose brain is underdeveloped.”

Prior to this finding, there was very little that could be offered in terms of genetic evaluation, but the current findings are a step in the right direction, Gleeson said, adding that “although there will ultimately be several more genes identified that can lead to the various forms of Joubert Syndrome, our discovery will help those individuals with the form that includes excessive cerebral cortex brain folding. Beyond that, we are very interested in studying this new gene in a whole host of childhood brain disorders”

In addition to Gleeson, authors of the paper were first author Tracy Dixon-Salazar, B.S., Jennifer L. Silhavy, M.S., Sara E. Marsh, M.S., Carrie M. Louie, B.S., Lesley C. Scott, M.S., UCSD Department of Neurosciences; Aithala Gururaj, M.D., Lihadh Al-Gazali, M.D. and Laslo Sztriha, M.D., Ph.D., Department of Pediatrics, United Arab Emirates University; Asma A. Al-Tawari, M.D., Neurology Department, Al Sabah Hospital, Kuwait; and Hulya Kayerili M.D., Prenatal Diagnosis Research Center, University of Istanbul.

The study was funded by the Joubert Syndrome Foundation and by grants from the March of Times and the National Institute of Neurological Disorders and Stroke.

Sue Pondrom | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Life Sciences:

nachricht Bacterial control mechanism for adjusting to changing conditions: How do bacteria adapt?
13.12.2017 | Technische Universität München

nachricht Cellular Self-Digestion Process Triggers Autoimmune Disease
13.12.2017 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Long-lived storage of a photonic qubit for worldwide teleportation

12.12.2017 | Physics and Astronomy

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>