Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene for Joubert syndrom with excessive brain folds discovered by UCSD researchers and Harvard team

21.10.2004



Researchers at the University of California, San Diego (UCSD) School of Medicine have discovered the gene for a form of Joubert Syndrome, a condition present before birth that affects an area of the brain controlling balance and coordination in about 1 in 10,000 individuals. Their study, published in the November 2004 issue of the American Journal of Human Genetics*, pointed to mutations in a gene called AHI1 that lead to the production of a protein the scientists named Jouberin.

Separate research by a team from Harvard Medical School concurrently identified the same gene in a paper published in the November 2004 issue of the journal Nature Genetics.** Both the UCSD and Harvard studies were published online prior to the print publications in November.

The AHI1 gene mutation is responsible for a form of Joubert Syndrome manifested by absence of part of the cerebellum, the part of the brain controlling balance, and by excessive folding in the cerebral cortex, the part of the brain controlling consciousness and thought. The results from both UCSD and Harvard involved a gene-by-gene search of chromosome 6 DNA from three families studied by UCSD and three separate families studied by Harvard. Researchers believe the disorder linked to chromosome 6 is the most common of the three known forms of Joubert Syndrome.



“This is a tremendously exciting finding because it is the first genetic defect clearly associated with this condition. Although Joubert Syndrome is relatively rare, we think that the genes causing this condition are going to underlie more common childhood brain and behavioral abnormalities, such as autism, mental retardation, and poor coordination” said the UCSD paper’s senior author, Joseph Gleeson, M.D., assistant professor of neurosciences at UCSD and Children’s Hospital San Diego.

This identification caps a five-year hunt for the first gene for Joubert syndrome. The Gleeson team initially recruited families in the U.S., but after initial attempts, shifted focus to families in the Middle East, where inbreeding (i.e. first-cousin marriages) are common and families commonly have 8-12 children. “These populations allowed us to better exploit the work of the human genome project to arrive at the chromosomal hot-spot,” he said.

Noting that many children with Joubert Syndrome also have autism, Gleeson explained that “if we can understand how the AHI1 gene works and how its dysfunction leads to disordered brain development, it can tell us something about the biology underlying a common disorder like autism.”

Also important are the implications for genetic testing, Gleeson added. “We receive frequent calls from parents who already have a child with Joubert Syndrome, and who want more children but are naturally concerned about having other children with major handicaps,” Gleeson said. “We also hear from obstetricians asking about genetic testing when they find a child on routine prenatal ultrasound whose brain is underdeveloped.”

Prior to this finding, there was very little that could be offered in terms of genetic evaluation, but the current findings are a step in the right direction, Gleeson said, adding that “although there will ultimately be several more genes identified that can lead to the various forms of Joubert Syndrome, our discovery will help those individuals with the form that includes excessive cerebral cortex brain folding. Beyond that, we are very interested in studying this new gene in a whole host of childhood brain disorders”

In addition to Gleeson, authors of the paper were first author Tracy Dixon-Salazar, B.S., Jennifer L. Silhavy, M.S., Sara E. Marsh, M.S., Carrie M. Louie, B.S., Lesley C. Scott, M.S., UCSD Department of Neurosciences; Aithala Gururaj, M.D., Lihadh Al-Gazali, M.D. and Laslo Sztriha, M.D., Ph.D., Department of Pediatrics, United Arab Emirates University; Asma A. Al-Tawari, M.D., Neurology Department, Al Sabah Hospital, Kuwait; and Hulya Kayerili M.D., Prenatal Diagnosis Research Center, University of Istanbul.

The study was funded by the Joubert Syndrome Foundation and by grants from the March of Times and the National Institute of Neurological Disorders and Stroke.

Sue Pondrom | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Life Sciences:

nachricht Repairing damaged hearts with self-healing heart cells
22.08.2017 | National University Health System

nachricht Biochemical 'fingerprints' reveal diabetes progression
22.08.2017 | Umea University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>