Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Zebrafish may offer researchers powerful new tool for studying innate immunity

19.10.2004


For the first time, researchers have sequenced all 36 genes of novel receptors that appear to play a critical role in the innate immune protection of zebrafish – an achievement that could lead to a better understanding of infectious diseases and certain cancers.




Their paper, titled "Resolution of the novel immune-type receptor gene cluster in zebrafish," appears online today in the Proceedings of the National Academy of Sciences. "This is the most genetically complex system of innate immune receptors thus far described,"said principal investigator Gary Litman, PhD, Hines professor of pediatrics who works at the Children’s Research Institute at the University of South Florida and All Children’s Hospital. "They may be related to receptors in humans involved in natural killer cell function." Natural killer cells sense and kill malignant cells and cells infected with certain viruses.

The zebrafish, a small species of freshwater aquarium fish, increasingly serves as an animal model for the study of genetic diseases. Like humans, it has two types of immune systems – innate and adaptive. Innate immune systems provide a first line of defense against foreign microorganisms. But, humans and other jawed vertebrates have also evolved more customized or adaptive immune systems, which use an arsenal of antibodies and T-cell receptors to fend off diverse pathogens and prevent repeat attacks.


Dr. Litman and his colleagues are trying to tease out details about the evolutionary transition from innate to adaptive immunity with powerful new biotechnology techniques.

They searched the genome of the zebrafish and identified a class of genes, called novel immune-type receptor (NITR) genes, which are predicted to be capable of recognizing a wide range of surface molecules. A portion of the NITR genes is very similar to variable region genes of antibodies and T-cell receptors, but the NITR genes do not undergo the complex genetic rearrangements of these adaptive receptors. "The comprehensive definition of the NITR gene cluster in zebrafish reported in this paper represents a significant step toward understanding the mechanisms underlying the transition from non-specific innate immunity to specific adaptive immunity," Dr. Litman said.

The researchers also found that only one of the 36 NITR genes is involved in the activation type of innate immunity. By targeting the one gene and knocking it out, researchers may be able to eliminate innate immunity. They hope to use the zebrafish as a tool to better understand how innate immunity may ignite adaptive immune response and to investigate potential therapies for immune deficiencies in humans.

Anne DeLotto Baier | EurekAlert!
Further information:
http://www.hsc.usf.edu

More articles from Life Sciences:

nachricht Stiffness matters
22.02.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Separate brain systems cooperate during learning, study finds
22.02.2018 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Stiffness matters

22.02.2018 | Life Sciences

Magnetic field traces gas and dust swirling around supermassive black hole

22.02.2018 | Physics and Astronomy

First evidence of surprising ocean warming around Galápagos corals

22.02.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>