Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Use Brain Cell Transplants To Correct Muscle Spasms After Aneurysm Surgery

19.10.2004


Transplantation of human brain cells corrected involuntary muscle spasms in rats with ischemic spinal cord injury, according to research published online October 12 and in print October 19, 2004 in the European Journal of Neurosciences by investigators at the University of California, San Diego (UCSD) School of Medicine.



Ischemic spinal cord injury, caused by reduced blood flow to the spinal cord, occurs in 20 to 40 percent of the several hundred patients each year in the U.S. who undergo surgery to repair an aneurysm, or sac-like widening of the aorta, the main artery that leaves the heart. A subpopulation of patients with ischemic spinal cord injury develop a prominent muscle spasticity, or jerkiness of the legs and lower body, due to the irreversible loss of specialized spinal cord cells that control local motor function.

During a 12-week period in which the animals were followed, the UCSD team found that rats receiving the brain, or neuronal cell transplants displayed a progressive recovery of motor function and a decrease in spasticity in the lower extremities over a period of several weeks following the injections. Fifty percent of the animals experienced a significant improvement in motor function. In contrast, the “control” rats that did not receive transplants exhibited no improvement in motor function or spasticity. A post-mortem study of the animals showed a robust growth of neurons and an increase in neurotransmitters in the spinal cords of rats that received the transplanted neuronal cells.


“These findings provide conclusive evidence that transplantation of well defined human neuronal cells into a specific region of the spinal cord can be an effective treatment for spasticity in cases of ischemic spinal cord injury,” said the study’s lead author, Martin Marsala, M.D., UCSD associate professor of anesthesiology. “While we believe the transplantation may relieve spasticity in victims of traumatic spinal cord injury, as well, it won’t help those patients recover voluntary movement,” he added.

Current treatment for debilitating muscle spasticity is continuous systemic or spinal drug treatments using implanted pumps. These approaches display limited efficacy with accompanying side effects and eventual drug tolerance.

The ischemic spinal cord injury that occurs during surgery is usually due to clamping of the blood flow to the spinal cord, to permit repairs of the aorta, Marsala said. The loss of specialized spinal cord neurons called spinal inhibitory neurons is irreversible and the resulting spasticity often worsens over time as more neurons are lost.

In addition to Marsala, authors of the paper included Tony Yaksh, Ph.D. and Osamu Kakinohana, Ph.D., UCSD Department of Anesthesiology; and Zoltan Tomori and Dasa Cizkova, Slovak Academy of Sciences, Slovakia. The study was funded by the National Institutes of Health.

Sue Pondrom | EurekAlert!
Further information:
http://www.health.ucsd.edu
http://www.ucsd.edu

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>