Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Use Brain Cell Transplants To Correct Muscle Spasms After Aneurysm Surgery

19.10.2004


Transplantation of human brain cells corrected involuntary muscle spasms in rats with ischemic spinal cord injury, according to research published online October 12 and in print October 19, 2004 in the European Journal of Neurosciences by investigators at the University of California, San Diego (UCSD) School of Medicine.



Ischemic spinal cord injury, caused by reduced blood flow to the spinal cord, occurs in 20 to 40 percent of the several hundred patients each year in the U.S. who undergo surgery to repair an aneurysm, or sac-like widening of the aorta, the main artery that leaves the heart. A subpopulation of patients with ischemic spinal cord injury develop a prominent muscle spasticity, or jerkiness of the legs and lower body, due to the irreversible loss of specialized spinal cord cells that control local motor function.

During a 12-week period in which the animals were followed, the UCSD team found that rats receiving the brain, or neuronal cell transplants displayed a progressive recovery of motor function and a decrease in spasticity in the lower extremities over a period of several weeks following the injections. Fifty percent of the animals experienced a significant improvement in motor function. In contrast, the “control” rats that did not receive transplants exhibited no improvement in motor function or spasticity. A post-mortem study of the animals showed a robust growth of neurons and an increase in neurotransmitters in the spinal cords of rats that received the transplanted neuronal cells.


“These findings provide conclusive evidence that transplantation of well defined human neuronal cells into a specific region of the spinal cord can be an effective treatment for spasticity in cases of ischemic spinal cord injury,” said the study’s lead author, Martin Marsala, M.D., UCSD associate professor of anesthesiology. “While we believe the transplantation may relieve spasticity in victims of traumatic spinal cord injury, as well, it won’t help those patients recover voluntary movement,” he added.

Current treatment for debilitating muscle spasticity is continuous systemic or spinal drug treatments using implanted pumps. These approaches display limited efficacy with accompanying side effects and eventual drug tolerance.

The ischemic spinal cord injury that occurs during surgery is usually due to clamping of the blood flow to the spinal cord, to permit repairs of the aorta, Marsala said. The loss of specialized spinal cord neurons called spinal inhibitory neurons is irreversible and the resulting spasticity often worsens over time as more neurons are lost.

In addition to Marsala, authors of the paper included Tony Yaksh, Ph.D. and Osamu Kakinohana, Ph.D., UCSD Department of Anesthesiology; and Zoltan Tomori and Dasa Cizkova, Slovak Academy of Sciences, Slovakia. The study was funded by the National Institutes of Health.

Sue Pondrom | EurekAlert!
Further information:
http://www.health.ucsd.edu
http://www.ucsd.edu

More articles from Life Sciences:

nachricht Flavins keep a handy helper in their pocket
25.04.2018 | University of Freiburg

nachricht Complete skin regeneration system of fish unraveled
24.04.2018 | Tokyo Institute of Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Getting electrons to move in a semiconductor

25.04.2018 | Physics and Astronomy

Reconstructing what makes us tick

25.04.2018 | Physics and Astronomy

Cheap 3-D printer can produce self-folding materials

25.04.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>