Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New version of tumor-suppressor linked to progression of childhood cancer

19.10.2004


Researchers have discovered an unexpected role as a tumor promoter for a molecule that was previously thought to function exclusively as a cancer suppressor in neuroblastoma (NB), a highly aggressive and deadly childhood cancer. The study, published in the October issue of Cancer Cell, reveals new evidence about what stimulates progression of neuroblastoma and may provide a likely target for new anti-cancer therapies.



Neurotrophin tyrosine kinase receptor type I (TrkA) responds to nerve growth factor and plays a key role in the development of the nervous system. Mutated TrkA has been associated with many human cancers, including colon, thyroid and prostate cancers. However, previous studies have suggested that TrkA acts as a tumor-suppressor in NB. Dr. Andrew R. Mackay and colleagues from the University of L’Aquila in Italy found a previously undiscovered variant of TrkA, called TrkIII, which exhibits oncogenic properties in human NB cells. TrkIII levels are elevated in advanced stage NB tumors, suggesting that the molecule may play a role in cancer progression. The researchers found that the level of TrkIII resulting from altered splicing of TrkA transcripts is controlled in part by hypoxia, a condition where cells are deprived of oxygen that is known to contribute to cancer progression. The researchers found that TrkIII stimulated advancement of NB, in part, by interfering with the normal anti-oncogenic function of TrkA.

The researchers conclude that formation of TrkIII represents a tumor-promoting switch in NB. Preventing generation of TrkIII may serve to inhibit NB progression. "A potential mechanism for regulating NB progression based on alternative TrkAIII splicing rather than genetic TrkA abnormality would theoretically permit reversal by re-establishing regular TrkA (I/II) splicing, which would represent a potential therapeutic goal," explains Dr. Mackay.


Antonella Tacconelli, Antonietta R. Farina, Lucia Cappabianca, Giuseppina DeSantis, Alessandra Tessitore, Antonella Vetuschi,1 Roberta Sferra, Nadia Rucci, Beatrice Argenti, Isabella Screpanti, Alberto Gulino, and Andrew R. Mackay: "TrkA alternative splicing: A regulated tumor-promoting switch in human neuroblastoma"

Heidi Hardman | EurekAlert!
Further information:
http://www.cell.com

More articles from Life Sciences:

nachricht Fine organic particles in the atmosphere are more often solid glass beads than liquid oil droplets
21.04.2017 | Max-Planck-Institut für Chemie

nachricht Study overturns seminal research about the developing nervous system
21.04.2017 | University of California - Los Angeles Health Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>