Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research gaining momentum by silencing genes

18.10.2004


Along with five European academic laboratories, researchers from the Flanders Interuniversity Institute for Biotechnology (VIB) connected to Ghent University are accelerating the study of the model plant Arabidopsis thaliana.

Taking advantage of the new RNAi technology, they are able to study the function of genes with the aid of specially designed fragments that turn off the corresponding genes. The scientists are building a collection of such fragments in Arabidopsis. Their ultimate goal is to contribute to the elucidation of the functions of all the genes in this model organism. Furthermore, this collection will also benefit research into other organisms, namely humans and animals.

A model system for plants, animals and humans



Arabidopsis thaliana or the mouse-ear cress (a member of the mustard family) is a weed that is cultivated in numerous labs. Indeed, due to its genetic simplicity - it contains ’only’ 29,000 genes - it is the most widely studied plant. The DNA sequence of Arabidopsis has been known for several years, and scientists worldwide are now concentrating on the search for the genes and the function of the proteins involved. Not only will this lead to new insights into the functioning of plant cells, which is important for agriculture and nutrition, but it will also shed light on the role of animal and human genes. More and more, scientists are discovering that biological processes in animals and humans are comparable to processes in plants.

Recent technology for studying genes

At present, we know the function of only 5000 Arabidopsis genes - and scientists want to identify the function of the other 80% as quickly as possible. Until recently, they would have done this gene by gene, but research is rapidly evolving towards investigating multiple genes in parallel. Of course, new technologies are always needed to make these leaps, and RNAi is one such technology. This new technology makes it possible to prevent the production of a protein with a specifically designed fragment that turns off the coding gene. The removal of the protein then induces alterations in the plant during its development, and from these alterations researchers can deduce the function of the protein in question.

Collection available to everyone

Pierre Hilson and his colleagues have made the use of RNAi for the study of Arabidopsis genes a lot easier. In the context of the AGRIKOLA European project, they are working on a collection of ’inactivating’ fragments for all Arabidopsis genes. The current collection contains fragments designed to inactivate more than 20,000 different genes. This project will accelerate the study of the functions of the Arabidopsis genes - and thus of other living organisms. Scientists worldwide will soon be able to use the collection to study plant proteins in a highly targeted manner.

Sooike Stoops | EurekAlert!
Further information:
http://www.vib.be

More articles from Life Sciences:

nachricht Cnidarians remotely control bacteria
21.09.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Immune cells may heal bleeding brain after strokes
21.09.2017 | NIH/National Institute of Neurological Disorders and Stroke

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>