Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research gaining momentum by silencing genes

18.10.2004


Along with five European academic laboratories, researchers from the Flanders Interuniversity Institute for Biotechnology (VIB) connected to Ghent University are accelerating the study of the model plant Arabidopsis thaliana.

Taking advantage of the new RNAi technology, they are able to study the function of genes with the aid of specially designed fragments that turn off the corresponding genes. The scientists are building a collection of such fragments in Arabidopsis. Their ultimate goal is to contribute to the elucidation of the functions of all the genes in this model organism. Furthermore, this collection will also benefit research into other organisms, namely humans and animals.

A model system for plants, animals and humans



Arabidopsis thaliana or the mouse-ear cress (a member of the mustard family) is a weed that is cultivated in numerous labs. Indeed, due to its genetic simplicity - it contains ’only’ 29,000 genes - it is the most widely studied plant. The DNA sequence of Arabidopsis has been known for several years, and scientists worldwide are now concentrating on the search for the genes and the function of the proteins involved. Not only will this lead to new insights into the functioning of plant cells, which is important for agriculture and nutrition, but it will also shed light on the role of animal and human genes. More and more, scientists are discovering that biological processes in animals and humans are comparable to processes in plants.

Recent technology for studying genes

At present, we know the function of only 5000 Arabidopsis genes - and scientists want to identify the function of the other 80% as quickly as possible. Until recently, they would have done this gene by gene, but research is rapidly evolving towards investigating multiple genes in parallel. Of course, new technologies are always needed to make these leaps, and RNAi is one such technology. This new technology makes it possible to prevent the production of a protein with a specifically designed fragment that turns off the coding gene. The removal of the protein then induces alterations in the plant during its development, and from these alterations researchers can deduce the function of the protein in question.

Collection available to everyone

Pierre Hilson and his colleagues have made the use of RNAi for the study of Arabidopsis genes a lot easier. In the context of the AGRIKOLA European project, they are working on a collection of ’inactivating’ fragments for all Arabidopsis genes. The current collection contains fragments designed to inactivate more than 20,000 different genes. This project will accelerate the study of the functions of the Arabidopsis genes - and thus of other living organisms. Scientists worldwide will soon be able to use the collection to study plant proteins in a highly targeted manner.

Sooike Stoops | EurekAlert!
Further information:
http://www.vib.be

More articles from Life Sciences:

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

nachricht The Nagoya Protocol Creates Disadvantages for Many Countries when Applied to Microorganisms
05.12.2016 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>