Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research gaining momentum by silencing genes

18.10.2004


Along with five European academic laboratories, researchers from the Flanders Interuniversity Institute for Biotechnology (VIB) connected to Ghent University are accelerating the study of the model plant Arabidopsis thaliana.

Taking advantage of the new RNAi technology, they are able to study the function of genes with the aid of specially designed fragments that turn off the corresponding genes. The scientists are building a collection of such fragments in Arabidopsis. Their ultimate goal is to contribute to the elucidation of the functions of all the genes in this model organism. Furthermore, this collection will also benefit research into other organisms, namely humans and animals.

A model system for plants, animals and humans



Arabidopsis thaliana or the mouse-ear cress (a member of the mustard family) is a weed that is cultivated in numerous labs. Indeed, due to its genetic simplicity - it contains ’only’ 29,000 genes - it is the most widely studied plant. The DNA sequence of Arabidopsis has been known for several years, and scientists worldwide are now concentrating on the search for the genes and the function of the proteins involved. Not only will this lead to new insights into the functioning of plant cells, which is important for agriculture and nutrition, but it will also shed light on the role of animal and human genes. More and more, scientists are discovering that biological processes in animals and humans are comparable to processes in plants.

Recent technology for studying genes

At present, we know the function of only 5000 Arabidopsis genes - and scientists want to identify the function of the other 80% as quickly as possible. Until recently, they would have done this gene by gene, but research is rapidly evolving towards investigating multiple genes in parallel. Of course, new technologies are always needed to make these leaps, and RNAi is one such technology. This new technology makes it possible to prevent the production of a protein with a specifically designed fragment that turns off the coding gene. The removal of the protein then induces alterations in the plant during its development, and from these alterations researchers can deduce the function of the protein in question.

Collection available to everyone

Pierre Hilson and his colleagues have made the use of RNAi for the study of Arabidopsis genes a lot easier. In the context of the AGRIKOLA European project, they are working on a collection of ’inactivating’ fragments for all Arabidopsis genes. The current collection contains fragments designed to inactivate more than 20,000 different genes. This project will accelerate the study of the functions of the Arabidopsis genes - and thus of other living organisms. Scientists worldwide will soon be able to use the collection to study plant proteins in a highly targeted manner.

Sooike Stoops | EurekAlert!
Further information:
http://www.vib.be

More articles from Life Sciences:

nachricht New catalyst controls activation of a carbon-hydrogen bond
21.11.2017 | Emory Health Sciences

nachricht The main switch
21.11.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Previous evidence of water on mars now identified as grainflows

21.11.2017 | Physics and Astronomy

NASA's James Webb Space Telescope completes final cryogenic testing

21.11.2017 | Physics and Astronomy

New catalyst controls activation of a carbon-hydrogen bond

21.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>