Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Flies have morning and evening clocks

14.10.2004


Two groups of researchers have independently discovered the long sought dual body clocks in the brain of fruit flies that separately govern bursts of morning and evening activity.



Both research groups published their findings in the October 14, 2004, issue of the journal Nature. Howard Hughes Medical Institute researcher Michael Rosbash at Brandeis University led one group; François Rouyer at the Centre National de la Recherche Scientifique in France led the second group. Graduate students Dan Stoleru and Ying Peng of Brandeis were co-lead authors of the Rosbash group’s article.

In an accompanying News & Views article in the journal Nature, neurobiologist William J. Schwartz of the University of Massachusetts Medical School, writes, "A truly integrative circadian biology is close at hand, as researchers learn about an adaptable, layered system that has emergent properties at many levels of organization. Drosophila workers, who have been so effective at taking the clock apart, are now succeeding in putting it back together."


Biological clocks in both flies and humans operate on a 24-hour, or circadian (Latin for "about a day"), cycle. In humans, the clock’s influence is far-reaching, governing such functions as sleeping and waking, fluid balance, body temperature, cardiac output, and oxygen consumption. In the fruit fly Drosophila, however, the circadian clock has its most overt effect on the fly’s level of activity. In both flies and humans, the clocks are circuits of neurons that naturally oscillate with a circadian periodicity. Inside these cells, the molecular components of the clock are "rewound" daily by the effects of light and other stimuli.

According to Rosbash, the central clue to the existence of dual circadian clocks in the fly was the observation that flies have two activity peaks. "It was always intriguing that flies had two peaks of activity, in the morning and evening, with a siesta during the day and not very much activity at night," he said. "There are several ways to explain that, but one possibility was that there were two clocks running -- one governing the morning peak and one governing the evening peak."

Rosbash and his colleagues theorized that if dual circadian clocks existed, they would likely occupy different anatomical positions in the fly brain. They knew that the flies’ circadian-clock neurons included one distinctive cluster called the ventral lateral neurons and another called the dorsal lateral neurons. The ventral lateral neurons were known to express an important circadian signaling molecule called pigment dispersing factor (PDF). The dorsal lateral neurons did not express a known signaling molecule, but were part of a larger group of circadian neurons that express a gene for a circadian photoreceptor protein known as cryptochrome.

Starting with those parameters, Rosbash and his colleagues used genetic techniques to selectively deliver cell death genes to ablate specific groups of neurons. They then observed how these genetic deletions affected the flies’ activity. The experiments revealed that the PDF-expressing ventral lateral neurons govern the morning activity peak; while another group of neurons, including the dorsal lateral neurons, governs the evening activity peak.

In additional experiments, the researchers selectively disrupted the internal clock machinery of the circadian neurons. The studies showed that one set of circadian neurons drives the other. "It’s as if there is a wiring circuit from one set to the next and, under natural light conditions, one can regulate the physiology of another," said Rosbash. The scientists theorize that this type of coupling between two circadian oscillators coordinates the two activity peaks and aids responses to environmental factors such as seasonal changes in lightness and darkness.

Rosbash said that there is evidence that mammals, including humans, also possess such dual circadian systems and that the systems communicate with one another, but researchers have not yet been able to distinguish the systems anatomically or biochemically.

Rosbash and his colleagues will continue to explore the details of the different clocks. Such studies, he said, may offer an important opportunity for understanding general principles of neural structure and function. "The circadian neurons are one of the few circuits in neurobiology where we have a chance to understand at multiple levels how different sets of neurons communicate with each other -- including understanding the wiring rules, the biochemical rules and the functional behavioral rules," he said.

Jennifer Michalowski | EurekAlert!
Further information:
http://www.hhmi.org

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>