Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chronic opiate use may raise vulnerability to stress

28.09.2004


Animal study sheds light on effects of hospital drugs

Chronic use of opiate drugs may alter brain neurons to make animal brains more sensitive to stress, according to a new study. If the research proves applicable to humans, the findings may help explain how hospital patients who have received morphine may be susceptible to stress disorder, attention problems and sleep disturbances. The effects on the brain may also contribute to better understanding of drug addiction.

The study, published in the September 22 issue of the Journal of Neuroscience, was the first to show that chronic opiate use disrupts the stress response of nerve cells in the noradrenergic system. This system, using a neurotransmitter called norepinephrine, influences the brain’s arousal and attention levels when a stressful event occurs.



The researchers observed that the norepinephrine neurons of rats that had received morphine infusions for a week discharged more frequently in response to a stressor, compared to neurons of rats that had not received morphine. "The increase in neuron firing indicated the neurons were more sensitive to stress, and we also found this sensitization translated into behavioral changes--as shown in the rats’ swimming behavior," said study leader Rita J. Valentino, Ph.D., a behavioral neuroscientist at The Children’s Hospital of Philadelphia.

The researchers used a swim stress test that involved placing rats into glass containers of water. The opiate-treated rats tried to climb the chamber walls, in contrast to untreated rats, which exerted only the effort needed to float. "The climbing behavior reflected a higher activity level in the rats whose brains had been sensitized by the opiates," added Dr. Valentino.

In both humans and rats, a stressful event, such as blood loss, causes one part of the brain to release a hormone called corticotropin-releasing factor (CRF). CRF in turn stimulates neurons in a portion of the brain called the locus ceruleus. Cells in the locus release the neurotransmitter norepinephrine, which activates the area of the brain governing arousal responses (part of the "fight or flight" response to an attack).

The current study found that chronic exposure to the opiate drug morphine made locus ceruleus neurons more sensitive to CRF than they had been previously. If this process occurs similarly in humans, it could have practical implications for hospital patients receiving morphine or similar opiate drugs. "Based on these findings, we would predict that patients will have an increased sensitivity to stress," said Dr. Valentino. Jittery patients might suffer disrupted sleep patterns, increased anxiety and other symptoms, many of them similar to those found in people with post-traumatic stress disorder (PTSD).

Researchers have previously noted sleep disturbances and a higher incidence of PTSD symptoms among opiate users, added Dr. Valentino. Her current study suggests that the opiate-induced sensitivity to stress may play a role in the cycle of addiction that causes drug abusers to continue seeking drugs. However, she added, the role of the norepinephrine system in opiate-seeking behavior remains controversial, and further studies are needed.

As a practical matter, physicians and family members of patients who are taking opiates should be aware of the potential for increased stress symptoms, explained Dr. Valentino. Both children and adults may receive opiates as painkillers in the hospital, and one concern is that young children are particularly vulnerable to the effects of stress because their brains are developing. "As research advances in this field, we may be able to find other opiate medications that do not sensitize neurons to the same degree," she added.

John Ascenzi | EurekAlert!
Further information:
http://www.chop.edu

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>