Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Trojan Horses, xenon imaging and remote controlled genes

25.08.2004


Chemical cages deliver drugs and peer into cells


Trojan Horse ferritin



As our understanding of biology increases, the tools of research become almost as important as the researchers wielding them. Currently, one of the major obstacles to research is actually getting inside of cells and tissue to see what is going on as it happens.

At the University of Pennsylvania, researchers are caging molecules – xenon, gene-blocking strands of antisense DNA and even therapeutics – to facilitate their entry into cells and enable researchers to observe nature’s biochemical clockwork.


Ivan Dmochowski, an assistant professor in Penn’s Department of Chemistry, details the methods that his lab is developing for the next generation of imaging, today at 9:30 a.m. at the American Chemical Society’s 228th National Meeting here.

"We are developing techniques to control and study biomolecules within cells and living systems," Dmochowski said. "The most immediate payoff from this research will be in figuring out how proteins interact in real time inside living organisms as well as how diseases, especially cancer, progress through the body."

Xenon-Enhanced Magnetic Resonance Imaging

While magnetic resonance imaging has already become a useful tool for research, Penn chemists hope to greatly extend the capabilities of MRI for monitoring multiple cancer markers simultaneously using the noble gas xenon as an imaging agent. By encapsulating a single atom of xenon within a cage made of cryptophane, it can become a sensitive reporter of changes outside the cage. When the cage is "rattled" by a specific cancer protein, for example, the xenon molecule will emit a telltale signal that can be tracked by MRI.

"Based on this principle, our lab is generating new biosensors that we hope will identify biomarkers associated with cancers of the lungs, brain and pancreas," Dmochowski said. "Over time, we’ll be able to use MRI to detect aberrant proteins that cause cancer in humans before the actual formation of a tumor."

"Trojan Horse" Proteins

Dmochowski and his colleagues are also exploring the use of ferritin, a large family of iron storage proteins that are integral to life, to smuggle items into cells. Since ferritin can move relatively easily into cells, the researchers are developing "greasy" ferritin-like cages that could be used for ferrying materials throughout the body. The protein cages have many interesting applications, including new agents for drug delivery, templates for forming metal nanoparticles and chemical probes for use in in vivo spectroscopic studies.

A Light Switch for Turning Off Genes

In order to understand the role of certain genes in embryonic development, the Dmochowski lab is studying how to use light to turn genes off. They have created caged antisense molecules – stretches of DNA that can clamp on top of working genes – that are released when their chemical cage is hit by ultraviolet or infrared light.

"By uncaging these molecules, our goal is to alter protein expression within a particular cell and at a particular time during development," Dmochowski said. "It means that researchers could turn specific genes off like a switch in order to find out the nature of a gene by what happens when it does not work."

Greg Lester | EurekAlert!
Further information:
http://www.upenn.edu

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>