Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Trojan Horses, xenon imaging and remote controlled genes

25.08.2004


Chemical cages deliver drugs and peer into cells


Trojan Horse ferritin



As our understanding of biology increases, the tools of research become almost as important as the researchers wielding them. Currently, one of the major obstacles to research is actually getting inside of cells and tissue to see what is going on as it happens.

At the University of Pennsylvania, researchers are caging molecules – xenon, gene-blocking strands of antisense DNA and even therapeutics – to facilitate their entry into cells and enable researchers to observe nature’s biochemical clockwork.


Ivan Dmochowski, an assistant professor in Penn’s Department of Chemistry, details the methods that his lab is developing for the next generation of imaging, today at 9:30 a.m. at the American Chemical Society’s 228th National Meeting here.

"We are developing techniques to control and study biomolecules within cells and living systems," Dmochowski said. "The most immediate payoff from this research will be in figuring out how proteins interact in real time inside living organisms as well as how diseases, especially cancer, progress through the body."

Xenon-Enhanced Magnetic Resonance Imaging

While magnetic resonance imaging has already become a useful tool for research, Penn chemists hope to greatly extend the capabilities of MRI for monitoring multiple cancer markers simultaneously using the noble gas xenon as an imaging agent. By encapsulating a single atom of xenon within a cage made of cryptophane, it can become a sensitive reporter of changes outside the cage. When the cage is "rattled" by a specific cancer protein, for example, the xenon molecule will emit a telltale signal that can be tracked by MRI.

"Based on this principle, our lab is generating new biosensors that we hope will identify biomarkers associated with cancers of the lungs, brain and pancreas," Dmochowski said. "Over time, we’ll be able to use MRI to detect aberrant proteins that cause cancer in humans before the actual formation of a tumor."

"Trojan Horse" Proteins

Dmochowski and his colleagues are also exploring the use of ferritin, a large family of iron storage proteins that are integral to life, to smuggle items into cells. Since ferritin can move relatively easily into cells, the researchers are developing "greasy" ferritin-like cages that could be used for ferrying materials throughout the body. The protein cages have many interesting applications, including new agents for drug delivery, templates for forming metal nanoparticles and chemical probes for use in in vivo spectroscopic studies.

A Light Switch for Turning Off Genes

In order to understand the role of certain genes in embryonic development, the Dmochowski lab is studying how to use light to turn genes off. They have created caged antisense molecules – stretches of DNA that can clamp on top of working genes – that are released when their chemical cage is hit by ultraviolet or infrared light.

"By uncaging these molecules, our goal is to alter protein expression within a particular cell and at a particular time during development," Dmochowski said. "It means that researchers could turn specific genes off like a switch in order to find out the nature of a gene by what happens when it does not work."

Greg Lester | EurekAlert!
Further information:
http://www.upenn.edu

More articles from Life Sciences:

nachricht The irresistible fragrance of dying vinegar flies
16.08.2017 | Max-Planck-Institut für chemische Ökologie

nachricht How protein islands form
15.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

Im Focus: Scientists improve forecast of increasing hazard on Ecuadorian volcano

Researchers from the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science, the Italian Space Agency (ASI), and the Instituto Geofisico--Escuela Politecnica Nacional (IGEPN) of Ecuador, showed an increasing volcanic danger on Cotopaxi in Ecuador using a powerful technique known as Interferometric Synthetic Aperture Radar (InSAR).

The Andes region in which Cotopaxi volcano is located is known to contain some of the world's most serious volcanic hazard. A mid- to large-size eruption has...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New thruster design increases efficiency for future spaceflight

16.08.2017 | Physics and Astronomy

Transporting spin: A graphene and boron nitride heterostructure creates large spin signals

16.08.2017 | Materials Sciences

A new method for the 3-D printing of living tissues

16.08.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>