Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

In gene regulation, small is beautiful

23.08.2004


University of Michigan chemists have used small molecules to take a big step forward in controlling gene activity.



Scientists have been trying for some time to develop molecules that mimic natural regulators of gene expression. These natural regulators, called transcription factors, prompt particular genes to be active or to stay quiet. Their role is crucial, because errors in gene regulation can lead to diseases ranging from diabetes to cancer. Creating synthetic versions, known as artificial transcription factors or ATFs, could help scientists probe gene regulation and perhaps lead to new treatment approaches.

Both natural transcription factors and their artificial counterparts typically have two essential parts: a DNA-binding domain that homes in on the specific gene to be regulated, and a regulatory domain that attaches itself to the cell’s machinery and activates or represses the gene.


Recently, U-M assistant professor of chemistry Anna Mapp and coworkers designed small molecules that mimic in a general way the features of natural transcriptional activators. In this research, published online in the Journal of the American Chemical Society earlier this month, small molecule artificial activation domains developed in Mapp’s lab were as effective as a natural activation domain at turning on genes.

Small molecules have great advantages as artificial gene regulators, said Mapp, who also will discuss the work Aug. 22 at a meeting of the American Chemical Society in Philadelphia. They are less likely than larger molecules to be degraded, and they should be easier to introduce into cells---features that would be critical if ATFs are to be used in treating disease.

Next, Mapp’s group plans to investigate exactly how their artificial activators work. "We haven’t rigorously proven that they function by the same mechanism as natural activators, but they seem to be quite analogous," she said. The researchers also will try attaching their activators to different DNA-binding domains to see if that affects their activity.

Nancy Ross-Flanigan | EurekAlert!
Further information:
http://www.umich.edu
http://www.chemistry.org

More articles from Life Sciences:

nachricht Molecular microscopy illuminates molecular motor motion
26.07.2017 | Penn State

nachricht New virus discovered in migratory bird in Rio Grande do Sul, Brazil
26.07.2017 | Fundação de Amparo à Pesquisa do Estado de São Paulo

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

CCNY physicists master unexplored electron property

26.07.2017 | Physics and Astronomy

Molecular microscopy illuminates molecular motor motion

26.07.2017 | Life Sciences

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>