Colloidal Adsorbent Removes Natural Organic Matter From Water Supply

Microbial degradation products and other forms of natural organic matter can make water look, smell and taste bad. Natural organic matter also can foul the membranes used in water treatment plants, significantly reducing their efficiency.

Now, a polymer-based colloidal adsorbent developed at the University of Illinois at Urbana-Champaign offers an environmentally friendly and cost-effective way of removing troublesome natural organic matter from municipal water supplies.

“Natural organic matter can react with chemical disinfectants such as chlorine to produce chloroform and other carcinogens in our drinking water,” said Mark Clark, a professor of civil and environmental engineering at Illinois and a researcher at the Center of Advanced Materials for Purification of Water With Systems on campus. “Ensuring a safe and clean water supply without forming dangerous byproducts is a major problem.”

One solution, he said, is to remove more of the harmful bacteria by using advanced filtration processes that utilize synthetic membranes made from polymer. Less chlorine would then be needed, which would reduce the formation of potentially dangerous chlorinated compounds. The problematic membrane fouling from natural organic matter could be avoided by adding the new colloidal adsorbent.

Several years ago, Clark and Robert Riley, a polymer chemist with Separation Systems Technology in California, invented the technology for producing a colloidal adsorbent from polysulfone – the same organic polymer used for water purification membranes. A patent was issued late last year.

To create their cleaning colloids, Clark and his students inject a solution of polysulfone into water under controlled mixing conditions. The polysulfone precipitates into colloidal particles about 50-60 nanometers in diameter, which then aggregate into clusters about 12-20 microns in diameter.

The pore size of the clusters is perfect for trapping natural organic matter, Clark said. The very high surface area of the particles also creates a large adsorption capacity.

“The particles work better than activated carbon for collecting natural organic foulants,” Clark said. “The colloids can be easily regenerated chemically, and they significantly reduce membrane fouling.” Not all natural organic matter fouls membranes, however. “A large percentage passes through the membrane with no problem,” Clark said. “Only about 5 to 10 percent of the material actually causes a problem.”

Now that the researchers have trapped the offending material in their adsorbent, they want to analyze it with advanced organic chemistry techniques. “We want to identify the material and characterize the nature of its interaction with the adsorbent,” said Clark, who will discuss the colloidal adsorbent at the 228th American Chemical Society national meeting in Philadelphia. “Then we can look for ways to further improve both the adsorbent and the membrane.”

The National Science Foundation and National Water Research Institute funded the work.

Media Contact

James E. Kloeppel University of Illinois

More Information:

http://www.uiuc.edu

All latest news from the category: Ecology, The Environment and Conservation

This complex theme deals primarily with interactions between organisms and the environmental factors that impact them, but to a greater extent between individual inanimate environmental factors.

innovations-report offers informative reports and articles on topics such as climate protection, landscape conservation, ecological systems, wildlife and nature parks and ecosystem efficiency and balance.

Back to home

Comments (0)

Write a comment

Newest articles

An exotic interplay of electrons

International research team discovers novel quantum state. Water that simply will not freeze, no matter how cold it gets – a research group involving the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) has discovered…

Positively charged nanomaterials treat obesity

… anywhere you want. Columbia researchers discover that the cationic charged P-G3 reduces fat at targeted locations by inhibiting the unhealthy lipid storage of enlarged fat cells. Researchers have long…

New analysis approach could help boost sensitivity of large telescopes

Large telescope receiver optics confirmed in lab prior to installation at Simons Observatory. Some of the largest and most sophisticated telescopes ever made are under construction at the Simons Observatory…

Partners & Sponsors