Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Virus known for its photo ops makes its movie screen debut

23.08.2004


High-resolution snapshots of a virus attacking its host – which have culminated in a movie of the process – could reveal secrets of viral infection and improve gene therapy techniques, according to a Purdue University research group.


artist’s conception of the T4 virus


T4 virus



Structural biologists including Michael G. Rossmann have obtained clearer pictures of how the T4 virus, long known to infect E. coli bacteria, alters its shape as it prepares to pierce its host’s cell membrane. The complicated infection process requires a flower-like section of the virus, known as the baseplate, to shape-shift by dramatically changing the configuration of the numerous proteins that form it. The team has taken cryoelectron microscope images of the baseplate from different moments in the process and transformed them into a brief animated movie, helping scientists understand how infection occurs and possibly enabling them to apply this knowledge for the benefit of human patients in the future.

"Instead of a still photo of the baseplate, we now have a movie of it opening," said Rossmann, who is Henley Distinguished Professor of Biological Sciences in Purdue’s School of Science. "A better understanding of the infection process is a step forward for fundamental science, but it also could allow scientists to alter the baseplate so that the virus could infect cells other than E. coli. T4 might then be used to deliver beneficial genes to damaged or infected human tissue."


The research was performed at Purdue and the Institute of Bioorganic Chemistry in Moscow by a team of scientists including first author Petr G. Leiman, Paul R. Chipman, Victor A. Kostyuchenko, Vadim V. Mesyanzhinov and Rossmann. The paper appears in the current (Aug. 20) issue of the scientific journal Cell, and it builds on research the team published last year regarding the baseplate of the T4 virus. This previous paper offered a close-up picture of the baseplate at a single moment in time, information that was valuable because of the detail it provided of the part of the virus that attached itself to E. coli’s surface.

"It was good to see the baseplate at such unprecedented resolution, but the infection process is not a still picture – it’s a story," Rossmann said. "We knew we needed to see more than one scene in that story if we were ever to understand its full meaning."

The baseplate is composed of 16 types of protein molecules, most present in multiple copies. Before infection, these proteins fit together to form a hexagonal shape. Together with the 12 legs that extend from the T4’s tail to grasp the victim E. coli, the virus resembles an Apollo moon lander. When the T4 approaches "touchdown" on an E. coli’s cell membrane, the baseplate’s proteins unfold in a complex motion, opening like a flower’s petals and changing shape from a hexagon to a star.

"We can now visualize how these proteins move together, which means a great deal for anyone trying to comprehend infection," Rossmann said. "If you saw a car speed past you for the first time ever, it might impress you, but you probably wouldn’t have much of an idea how it works. But if you stop it, you can examine the engine and find out. That’s essentially what we’ve done – stop the virus at two points in its attack on E. coli and examine the difference."

Scientists speculate that viruses are a key player in the evolutionary process on planet Earth. Far from being mere purveyors of disease, the viral infection process also could be partly responsible for spreading new genes among organisms rapidly and preparing their hosts for future environmental changes. This is part of viruses’ fascination for scientists like those on Rossmann’s team and why some medical professionals seek to use altered viruses to cure illnesses rather than cause them.

"Viruses’ great talent – injecting genetic material into living cells – could make them valuable for delivering healthy DNA to cells damaged by injury or cancer," said Leiman, a postdoctoral researcher in Rossmann’s lab. "T4’s baseplate proteins could be altered so it could infect human cells instead of E. coli. This study could bring us one step closer to using it as a gene therapy vehicle."

Gene therapy using T4 remains a distant possibility, however, and Rossmann said the true value of the team’s latest research was for the fundamental understanding it provides of the viral world.

"Viruses are among the tiniest of biological entities, yet nature has designed them to perform very complicated tasks," he said. "Understanding their behavior will open doors for scientists in many disciplines, especially with biologists, chemists and physicists increasingly working side by side."

As a step in that direction, Rossmann said he hopes that he and his colleagues will be able to obtain a better picture of the components within the tiny mechanism that is the baseplate.

"Our knowledge of the orientation of the proteins within the baseplate could still stand some improvement," he said. "We’d like to look under the hood of this car, so to speak, and determine precisely how the carburetor sits on the engine. Determining the structure and interactions of these proteins will help us down that road."

The research was funded in part by grants from the National Science Foundation, the International Human Frontier Science Program and the Howard Hughes Medical Institute.

Rossmann’s team is associated with Purdue’s Markey Center for Structural Biology, which consists of laboratories that use a combination of cryoelectron microscopy, crystallography, and molecular biology to elucidate the processes of viral entry, replication and pathogenesis.

Michael Rossmann | EurekAlert!
Further information:
http://www.purdue.edu

More articles from Life Sciences:

nachricht Could this protein protect people against coronary artery disease?
17.11.2017 | University of North Carolina Health Care

nachricht Microbial resident enables beetles to feed on a leafy diet
17.11.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>