Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ovarian cancer sheds tumor suppression with loss of estrogen receptor

16.08.2004


An important receptor for estrogen in ovarian cells has been shown to suppress tumor growth, according to a new study published in the August 15 issue of the journal Cancer Research. When ovarian tumors develop, however, the number of these receptors--known as estrogen receptor beta (ER beta)--diminishes, encouraging these tumors to advance toward malignancy and metastasis. This disappearing act may help explain why ovarian cancers are often typically resistant to anti-estrogen drugs including Tamoxifen.



"Ovarian cancer is remarkably lacking in response to antiestrogens such as Tamoxifen," Gwendal Lazennec, Ph.D., research group leader in molecular and cellular endocrinology of cancers at Inserm U540, Montpellier, France. "We hypothesized that this may be due to the selective decrease that we observed in the expression of message for ER beta in tumors from ovarian cancer patients."

Tumors from 58 ovarian cancer patients contained less messenger RNA for the ER beta than found in ovarian samples from healthy patients, said Lazennec, whose team included scientists from France and Italy. To understand how the loss of ER beta affected the ovarian cells during cancer progression, the gene for ER beta was replaced in ovarian cancer cell lines that no longer expressed the estrogen-triggered nuclear receptor. The ER beta reintroduced into the cancer cell lines did not share the classic functions attributed to estrogen receptors, including induction of progesterone receptor expression and fibuline-1C, and it’s ability to decrease the expression of the cyclin D1 gene was completely opposite of it’s counterpart, ER beta.


Furthermore, the restored ER beta induced apoptosis, or cell death, in the ovarian cancer cells.

"ER beta appears to have important regulatory functions in the control of the proliferation and motility of ovarian cancer," Lazennec said. "With the loss of ER beta in ovarian cells, ovarian cancers shed the restrictive properties of this steroid receptor in the regulation of cell growth, death and motility. The loss of ER beta expression appears to be an important event leading to the development of ovarian cancer."

Lazennec was joined in the ER beta studies by Aurélie Bardin, Pascale Hoffman, Françoise Vignon, Pascal Pujol, from the Unité INSERM 540, as well as Nathalie Boulle, Laboratoire de Biologie Cellulaire et Hormonale, H?pital Arnaud de Villeneuve, and Dionyssios Kasaros, Department of Obstetrics and Gynecology, via Ventimiglia, Turin, Italy.

Russell Vanderboom, PhD | EurekAlert!
Further information:
http://www.aacr.org

More articles from Life Sciences:

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

nachricht The Nagoya Protocol Creates Disadvantages for Many Countries when Applied to Microorganisms
05.12.2016 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>