Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Snapshots of the movement of molecules in a billionth of a second

05.08.2004


New method allows scientists to probe fundamental questions of surface science



A team of researchers including University of California, Riverside Assistant Professor of Chemistry, Ludwig Bartels has developed a technique to take extremely fast snapshots of molecular and atomic movement. The development is considered a significant advance in surface science, the study of chemical reactions taking place on the surface of solids.
The results are reported in the current issue of the Journal Science and were also reported in the June 24 issue of Science Express... the online prerelease of the most important articles in Science. The article, "Real-Space Observation of Molecular Motion Induced by Femtosecond Laser Pulses," details how carbon monoxide molecules move on a copper substrate when hit with extremely rapid laser pulses - a femtosecond is one millionth of a nanosecond - and tracks their movements.

"It was possible to identify the individual site-to-site displacements of molecules undergoing ultra-fast dynamics induced by femtosecond laser pulses," Bartels said, characterizing the technique as a way of getting something akin to snapshots of the molecules’ movements. Bartels’ co-authors in the paper included Tony F. Heinz, Dietmar Möller and Feng Wang of Columbia University; and Ernst Knoesel of Rowan University, Glassboro, NJ.



"Scanning probe microscopy has the capability of reaching directly down to the natural spatial scale of atoms and molecules," Bartels said. "While femtosecond laser techniques have the capability of reaching down to the time scale of atomic events.

"There has been considerable interest in the very challenging problem of combining these two capabilities," he added. "While we have not yet achieved the ultimate goal of a real-time, real-space movies, the current paper reports what we believe to be a very significant advance in combining the two very powerful techniques."

The new technique allows scientists to probe very important fundamental questions in surface science, according to Bartels and his co-authors. They include such questions as what substrate excitations drive surface diffusion of absorbates? Surface diffusion is a very basic and important process in surface science, playing a key role in processes as diverse as the formation of crystals and the activity of catalysts.

"This is very basic research but it has implications for many other areas in science," said Bartels. "Catalysts, like the one in the exhaust system in every car, are made from a porous material. The exhaust gas is passed through it and the pollutants such as carbon monoxide and nitric oxide can stick to the surface of the catalyst material."

A small portion of the catalyst surface can transform the pollutant into benign gasses while the rest of the surface supports these active sites. Understanding how carbon monoxide moves across a catalyst surface to find the active sites may ultimately allow the design of more efficient catalysts. The article’s findings offer a new way of studying the very fast movement of carbon monoxide on surfaces.

Ricardo Duran | EurekAlert!
Further information:
http://www.ucr.edu

More articles from Life Sciences:

nachricht Copper hydroxide nanoparticles provide protection against toxic oxygen radicals in cigarette smoke
29.05.2017 | Johannes Gutenberg-Universität Mainz

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Camera on NASA's Lunar Orbiter survived 2014 meteoroid hit

29.05.2017 | Physics and Astronomy

Strathclyde-led research develops world's highest gain high-power laser amplifier

29.05.2017 | Physics and Astronomy

A 3-D look at the 2015 El Niño

29.05.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>