Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecular therapeutics advance fight against brain cancer

05.08.2004


An estimated 41,000 new cases of primary brain tumors are expected to be diagnosed in 2004, according to the American Brain Tumor Association. To further narrow the gap between diagnosis and effective therapy, physicians at the University of Pennsylvania Health System now offer several promising approaches to brain tumor treatment, including novel imaging for oncologic neurosurgery and refined genetic testing for tumors to better target treatment.

Through enhanced magnetic resonance imaging (MRI), newer and broader information is helping to better guide tumor removal. MRI is used to measure the anatomy and metabolism of tumors. This informs surgeons pre- and post-operatively with a three-dimensional map of tumor-associated blood flow to more precisely assess the full extent of tumor growth versus conventional imaging methods. "This novel approach helps guide surgery and assessment of treatment response," says Donald M. O’Rourke, M.D., Associate Professor of Neurosurgery. These novel imaging methods are leading to increased patient survival by allowing for greater tumor removal in a safe manner.

Neuroscientists are also ushering in a new era in which genetics will dictate treatment. In the 1990s researchers noted that a more favorable prognosis in patients with certain brain tumors, primarily oligodendrogliomas, was associated with a deletion of genes on chromosomes 1 and 19. This genetic loss translates into a significant life-expectancy gain for some patients and is therefore a robust predictor that post-surgery chemotherapy should be given to such patients.



Patients with the genetic deletion on chromosome 1 have a median survival in certain cases of about 10 years and respond particularly well to chemotherapy given immediately after surgery. Patients with the deletion have slower-growing tumors and show a better response to chemotherapy; whereas, those without the deletion have relatively faster-growing tumors and are less responsive to chemotherapy, so radiation therapy is required sooner. "Given the expected increase in the life-span of patients with this deletion, there is no need to give radiation therapy early in their treatment," explains O’Rourke.

The deletion can only be detected by genetic analysis. "Under the microscope these tumors can look identical, so there’s no way of knowing the difference unless a genetic analysis is performed," explains O’Rourke.

Having the ability to provide such genetic testing to determine treatment is of benefit to patients. "The idea of using a genetic test to predict prognosis and select therapy, thereby deferring potentially deleterious treatment is tremendously attractive," says O’Rourke. "Penn’s genetic testing is done in-house, so patients don’t have to wait for the results." Further, there is no cost to the patient at this point since the tests are performed by the Neuro-oncology Program and supported by the Abramson Cancer Center at Penn. In addition, there is no requirement for additional blood samples, so results will be given more quickly with no need for follow-up visits.

Penn colleagues J. Carl Oberholtzer, MD, PhD, Department of Neuropathology and Myrna Rosenfeld, MD, PhD, Department of Neurology and Director of the Division of Neuro-oncology as well as Jaclyn Biegel, PhD, Director of Cytogenetics, Children’s Hospital of Philadelphia, collaborated with O’Rourke on developing the genetic testing program. Dr. Biegel’s laboratory performs the genetic test and has significant experience with genetic testing of brain tumors.

O’Rourke is also Director of the Human Brain Tumor Tissue Bank at Penn, one of only a few such dedicated banks in the United States. Tissue banks allow for the direct evaluation of human tumors and are one of the best ways to advance treatment options for gliomas and other human cancers. O’Rourke’s basic research interests include finding new treatments for gliomas based on genetic alterations detected in tumors. He is currently investigating a variant of the epidermal growth factor receptor that is present in many primary glioblastomas to better understand the development of malignancy in the brain and how it relates to cancer cell division, survival, and movement.

Karen Kreeger | EurekAlert!
Further information:
http://www.upenn.edu

More articles from Life Sciences:

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
22.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Chemists at FAU successfully demonstrate imine hydrogenation with inexpensive main group metal
22.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>