Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A First Glance at the Gene Networks of Human Aging

30.07.2004


Scientists have rendered the first gene and protein networks of human aging, an important step in understanding the genetic mechanisms of aging. The work led by Joao Pedro de Magalhaes from Harvard Medical School is detailed in the July 30 issue of FEBS Letters.

The work involved the integration of all genes, in both humans and animal models, previously shown to influence aging. By using a combination of bibliographic information and modern high-throughput genomics, employing software developed by the team, each gene was placed in the context of human biology. The putative impact of each gene to human aging was calculated by a combination of manual and computational methods, leading to a new holistic view of the genetics of aging. To organize and catalog all the data pertaining the over 200 genes selected, the first curated database of genes related to human aging was developed: GenAge, part of the Human Ageing Genomic Resources also led by Dr. de Magalhaes. Thanks to the help of many other researchers, the Human Ageing Genomic Resources have become, in months, the landmark online website for research on aging, having been recently featured in Nature Reviews Genetics (volume 5, issue 5, page 330) and SAGE KE (2004 volume, issue 30, nf69), Science Magazine’s website on aging research.

With the collaboration of researchers from the University of Namur in Belgium, scientists also analyzed protein-interaction maps for more specialized pathways previously linked with aging, such as the neuroendocrine regulation of aging and DNA metabolism. These findings and the rendered networks related to aging may prove useful to find novel genes of interest. In fact, several crucial nodes in the networks were identified by way of specialized software: a number of genes so far not linked to aging were chosen by a “guilt-by-association” methodology based on protein-protein interaction maps and data-mining algorithms. One intriguing finding was the apparent overlap between the genetics of aging and development. Aging could then be an indirect result of developmental pathways. The cascade of events that regulates ontogeny would then fade away after sexual maturity resulting in aging. Contrary to other theories of aging that argue aging derives from the accumulation of damage, Dr. de Magalhaes suggests that integrative pathways collaborate during development and then become disrupted during aging.



The GenAge database will be in constant development since several genes involved in aging are certainly yet to be identified. Even so, it provides an overview of the current state-of-the-art knowledge on human aging. While much works remains to fully understand aging, this is a major first step in understanding the genetic mechanisms of human aging and provides a framework for future experimental verification.

Joao Magalhaes | alfa
Further information:
http://www.med.harvard.edu
http://genomics.senescence.info

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>