Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Reveals gene linked to breast cancer can suppress tumors

29.07.2004


Finding identifies how estrogen-blocking ability of gene inhibits tumor growth

A UC Irvine researcher has found a novel tumor- suppressor function for a gene that, when mutated, often triggers breast cancer in women. The work also provides further evidence about how estrogen helps activate a disease that afflicts thousands of American women each year.

Dr. Ellis Levin, a professor of medicine, biochemistry and pharmacology at UCI, and colleagues at the Long Beach Veterans Administration Medical Center and Georgetown University Lombardi Cancer Center have identified how the healthy BRCA1 gene prevents the growth and survival of breast cancer cells. The gene accomplishes this by keeping estrogen and growth factor molecules from sending chemical messages through specific signaling pathways on the surface of breast cancer cells – signals that can cause a tumor to grow.



When the BRCA1 gene is mutated, however, it can no longer block this signaling activity from stimulating the growth and survival of cancer cells. The findings suggest that drugs developed to block estrogen signaling at these specific pathways can help curb the incidence of breast cancer in women. The study appears in the July issue of Molecular and Cellular Biology.

Levin said that the findings give further insight into how estrogen can interact with mutant BRCA1 to promote the development of breast cancer. This discovery is important, he added, because women who take estrogen supplements for more than five years to treat menopause symptoms increase their chances of developing breast cancer by about 25 percent.

“The therapeutic goal is to develop estrogen inhibitors that would prevent these types of undesirable effects, yet preserve the positive effects that prevent osteoporosis or hot flashes. Alternatively, enhancing or restoring normal BRCA1 protein function is another approach to consider in women with such BRCA1 mutations,” said Levin, who also is chief of endocrinology at UCI and at the VA Medical Center.

It has been long established that mutations in BRCA1 genes strongly increase the risk of breast and ovarian cancer in women and prostate cancer in men; up to 80 percent of women who have this mutated gene ultimately develop breast cancer. Healthy BRCA1 genes are involved with repairing DNA damage, promoting chromosome stability and regulating cell growth activity, but this study has identified a novel and potentially important role as a tumor suppressor. The researchers only studied the tumor-suppressing role of BRCA1 in breast cancer.

Mahnaz Razandi and Ali Pedram of UCI and Dr. Eliot Rosen of Georgetown assisted with the study. The Department of Veterans Affairs, Department of Defense, the National Institutes of Health, the Avon Products Breast Cancer Research Foundation and the Susan B. Komen Breast Cancer Foundation provided support.

Tom Vasich | EurekAlert!
Further information:
http://www.uci.edu

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>